
CECOM

CENTER FOR SOFTWARE ENGINEERINGLn
00 ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Transportability Guideline
for Ada Real-Time Software

CIN: C02 092LA OOOEP.
._.......31 MAY 1989 ;.:

e..

CECC 20 19898

0039

TRANSPORTABILITY GUIDELINE FOR

ADA REAL-TIME SOFTWARE

PREPARED BY:

LABTEK CORPORATION
8 LUNAR DRIVE

WOODBRIDGE, CT 06525

SPONSORING ORGANIZATION:

U.S. ARMY HQ CECOM
CENTER FOR SOFTWARE ENGINEERING

DATE:

24 APRIL 1989

CONTRACT NO. DAAL03-86-D-0001

DELIVERY ORDER NUMBER: 0731
SCIENTIFIC SERVICES PROGRAM

The views, opinions, and/or findings contained in this report are those
of the author and should not be construed as an official Department of
the Army position, policy, or decision, unless so designated by other
documentation.

Table of Contents

1. Introduction .. 1

1.1 Background .. I

1.2 Purpose and Intent .. 1

1.3 Intended A udience .. 2

1.4 O rganization of Docum ent .. 2

2. A pproach ... 3

3. Technical D iscussion ... 4

3.1 D efinitions ... 4

3.1.1 T ransportability ... 4

3.1.2 R eusability .. 6

3.1.3 Distinction Between Transportability and Reusability 6

3.2 Ada and Transportability .. 7

4" Transportability C onsiderations for Real-Tim e System s ... 9

4.1 T ransportability vs. Com plexity .. 9

4.2 Transportability vs. Perform ance ... 9

5. Transportability G uideline ... 16

5.1 Erroneous Programs and Incorrect Order Dependencies 17

5.2 Storage Issues ... 18

5.3 Perform ance Issues .. 19

5.4 Tasking Issues ... 20

5.5 Interrupt Processing Issues .. Y2

5.6 N um eric Issues .. 23

5.7 Subprogram Issues .. 24

5.8 Input/O utput Issues .. 25

-

Table of Contents

5.9 Other Issues .. 26

6. Summary 29

7. References... 30

8. Glossary.. 31

9. Appendix A - Implementation Tests .. 32

10. Appendix B - Transportability Requirements Report... 60

List of Figures

1. Figure 1. Ada Runtime Environment (RTE) ... 4

2. Figure 2. Transporting an Application.. 5

3. Figure 3. Reusing a Component.. 6

'For
NTI -S ,,C- --I

IDFIC
1 j

~JL~3ti

r rt

DiSt

Transportability Guidelines for Ada Real-Time Software

1. Introduction

/ This document reports the findings of a project that analyzed issues involved with the
transporting of real-time Ada programs. -

1.1 Background

Software transportability is one of the cost-saving benefits anticipated with the use of Ada.
Support for transportability was a major goal in the design of the Ada language. However,
transportability is not automatic with the use of Ada; programs written without specific
attention to transportability will not, in general, be transportable. ',

__2
Software must be transportable in order to take advantage of rapid changes W both
processor technology and compiler technology. The time between processor generations is
typically less than three years, whereas the application software must endure for a period of
10-20 years. Current compilers are evolving rapidly. Performance gains due to optimization
are eagerly awaited in each new compiler release.

-For real-time-embet-ed applications, -software test-on-host and integration-on-target
requires that the application program be transportable to at least two difterent computers
(typically). Programming teams must develop software on a host environment, perform as
much testing as possible on the host, and then transport the code to the target environment
for further testing and integration. Again, designing software to be transportable will be an
aid in this process. ;, f. (

Software transportability is also a prerequisite for a "Software First" methodology. This
methodology purports designing the application software without regard for the underlying
hardware. in the past, hardware selection was the driving cost associated with a system.
Today, the custom application software is the driving cost. Much of the hardware can be
bought off-the-shelf.

Transportability is not an absolute, but rather a measure of degree. It is unusual to obtain
100% transportable software when working with real-time embedded applications. Rather,
the goal is to maximize the transportability in the face of other programming constraints.
Tradeoffs are frequently required to achieve the appropriate degree o transportability while
obtaining sufficient performance and program clarity.

Transportability does not come without additional costs. Initial training of the staff must be
included in the budgeting for resources. Designing for transportability is usually more
difficult because the design is further constrained by the need to limit implementation
dependencies. The coding of the software is also hindered because the programmer must
always be concerned that each of the guidelines is met. This often requires writing more
complicated code to achieve the same effect. Coordination among the programmers is also
more important to maximize the commonality within a program.

1.2 Purpose and Intent

The purpose of this report is to develop an initial set of guidelines for writing transportable
Ada programs for embedded real-time applications. Three transportability guideline reports

-"

Transportability Guidelines for Ada Real-Time Software

have already been written. The first, in 1982, titled "Ada-Europe Guidelines for the
Portability of Ada Programs", by Nissan, Wallis, Wichmann and others [2], and the second in
1985, titled "Ada Portability Guidelines"; by Sof'ech, Inc.. [3]. The third report was just
recently published in February 1988 by Software Productivity Consortium, titled "Ada Style
Guide". [11] Work in this area is also currently underway at the Software Engineering
Institute. The intent of this report is not to duplicate previous work, but rather, to produce a
guideline which focuses on dealing with the implementation dependencies allowed within
the Ada language to achieve transportable software for real-time applications.

The Catalogue of Ada Runtime Implementation Dependencies (CRID), initially produced
by the Ada Runtime Environment Working Group (ARTEWG) of SIGAda, and
subsequently enhanced by the Center for Software Engineering (CSE), Fort Monmouth, NJ
[9], is an important input into this work. It details the areas of the Ada language where the
language definition has left the implementation details up to the Ada ccmpiler writer.
These are the areas of the language which will not necessarily transport. This guide will
show how to handle these implementation dependencies.

1.3 Intended Audience

The intended audience of this guide includes those individuals trying to port software,
evaluate software for transportability, or perform Ada design, code, and implementation.
This guide may also be beneficial to software project management personnel.

1.4 Organization of Document

Section one contains background information as well as the purpose and intent of this work.

Section two details the approach used to gather the information and the criteria used for its
evaluation.

Section three is a technical discussion of the following:

- Definition of transportability and its relationship to reusability for real-time
embedded applications.
- How the Ada language enhances and/or impedes the process of producing
transportable real-time programs.

Section four discusses the interrelationship of transportability with real-time programming.
It contains representative benchmarks which demonstrate how to evaluate the relative
performance of transportable software compared with more implementation specific
software.

Section five assimilates all of the information into a guide for writing transportable Ada
software for real-time embedded applications. These guidelines are in the form of
recommendations on how to use the real-time features of Ada.

Section six contains a summary of the results.

Section seven contains the reference materials used in the creation of this report.

Section eight contains a glossary of terms used in this report.

-2-

Transportability Guidelines for Ada Real-Time Software

2. Approach

The approach used to obtain the information in this report was:

1. Review the current literature, especially the ARTEWG and CSE documents [8,9], for
material relevant to this task.

2. Determine the relationship between transportability and reusability in real-time
embedded applications.

3. Demonstrate how the Ada language enhances or impedes the process of producing
transportable real-time programs.

4. Develop and execute representative benchmarks to test the performance of transportable
software using two Ada compilers hosted and/or targeted for different machines and
incorporate the results into the transportability guideline.

5. Show how transportability relates to performance in real-time embedded systems.

6. Analyze the input material obtained by steps 1-5 above and produce the guideline.

-3-

Transportability Guidelines for Ada Real-Time Software

3. Technical Discussion

3.1 Definitions

3.1.1 Transportability

An Ada RunTime Environment (RTE) consists of three functional areas: abstract data
structures, code sequences, and predefined subroutines. It includes all of the runtime
support routines, the conventions between the runtime routines and the compiler, and the
underlying virtual machine of the target computer. "Virtual" is used in the sense that it may
be a machine with layered software (a host operating system). An RTE does not include the
application itself, but includes everything the application can interact with. Each layer has a
protocol between it and the layer underneath it for interfacing. In the event that there isn't
any operating system layer (the bare- machine target), the runtime includes those low-level
functions found in an operating system. [8] See Figure 1.

APPLICATION

{ d UNTI EAd RTOPERATING SYSTE' d RE

HA RD'WAE

Figure 1. Ada Runtime Environment (RTE)

The RunTime System (RTS) is the set of subprograms, which may be invoked by linking,
loading, and executing object code generated by an Ada compiler. If these subprograms use
or depend upon the services of an operating system, then the target runtime system includes
those portions of that operating system. [7] These predefined subroutines are chosen from
the Runtime Library (RTL) for that Ada compilation system.

For this report, "transporting software" means to change the runtime environment (RTE) of
an application. A change could be as small as using a different compiler or linker control, or
much larger such as moving the application to a completely new target architecture and
switching to a new compiler.

Transportability, then, is the measure of effort required to transport application software to a
different runtime environment (RTE). For a measure, if it requires 1-person month to

-4-

Transportability Guidelines for Ada Real-Time Software

transport software that required 20 person months to develop, the software is said to be 95%
"transportable".

The shaded area in Figure 2. depicts the area of change when an application is transported.
The application does not change (the larger circle representing the Application is not
shaded), but the runtime environment does change (by definition, note the smaller shaded
circle of runtime environment 2). Portions of the application code which directly interfaces
to the runtime environment (note the shaded box around runtime environment 2) may also
change.

... .. APP:L ICATION N APP L ICATION

Runtime utm

L Environment

iomn

Trarsporting an AppLiction

Figure 2. Transporting an Application

*here are several common reasons for software transport:

a.) A new CPU. The next processor generation could become available and in order
to take advantage of the increased processor performance it may bc desirable to
replace the existing CPU with it. In some cases, it may be necessary to change
processor families altogether.

b.) A new compiler. A new version of the compiler may be released. In order to take
advantage of its new features or to keep current it may be desirable to use this new
compiler version.

c.) A new runtime library. The compiler vendor could supply a new version of the
runtime library. This will produce a change in the RTE.

d.) Different compiler switches are enabed (optimization). The same code can work
differently with different compiler switches enabled/disabled. A typical case in point
is the optimization switch. Care must be taken to insure that the application code
operates as desired after this switch is enabled.

-5-

Transportability Guidelines for Ada Real-Time Software

e.) A change in underlying operating system. If the underlying operating system
changes, this is essentially a change in the RTE. It is important to know what effect
this has on the application softwarer

In developing transportable software, the primary objective is to reduce the difficulty in
identifying and changing the parts of the program necessary to get acceptable program
behavior on the new target. Special attention is required to insure that the new program
does indeed perform with correct characteristics. An important goal is to force any required
implementation dependencies that are different between the two targets to be identified
during program compilation rather than during program execution.

3.1.2 Reusability

Reusability is a measure of effort required to use a software component in a new application.
In order to be effectively reused, the component may have to be adapted to the
requirements of the new application. [4]

The shaded area in Figure 3. below depicts the area of change when a component from
Application 1 is reused in Application 2. The application itself changes (note the shading of
the large circle for Application 2), but most of the reusable component is left intact (note
the unshaded box within the smaller circle of Application 2). There may be portions of the
reusable component which need modification (note the shaded portion of the smaller circle
of Application 2) to operate correctly in the new application.

// APPLICATICIN 1 -,APPLICATION 2

ReusabteLe
Corponent Conpon n

Rewsing a Component

Figure 3. Reusing a Component

3.1.3 Distinction between Transportability and Reusability

The distinction between transportability and reusability is the following: Transportability is
concerned with changes in the runtime environment, whereas reusability is concerned with

-6-

Transportability Guidelines for Ada Real-Time Software

changes in application. It is possible to have code that is reused, transported, or both. Often
transportability is a requirement of reuse, but not always.

There are several things to notice in the definition of transportability that make it distinct
from reusability, as noted in [4].

- Transportability is normally concerned with transporting an entire application,
whereas reusability is concerned with the reuse of a component of an application.

- When an application is transported, it is used in a new target environment; when a
component is reused, it is used in a new application.

- Reusability is concerned with dealing with a different application which uses a
component and any aspects of that component that need to change to reflect the
requirements of the new application.

- To a large extent, reusability is a design consideration while transportability is an
implementation consideration. Reusability is achieved primarily by control of the
structure of the overall system and of the nature of the interfaces between
components. Transportability is concerned more with specific use of language
featu'res so as to avoid undesired hardware (or other target environment)
dependencies. A useful (although somewhat simplified) way to look at this is that
reusability deals with software and interface dependencies, while transportability deals
with hardware and system software dependencies.

Transportability of an application does not imply that the components ol that application are
reusable in another application. It is very likely that all components of the application could
be tightly coupled, thus preventing any one of them from being used separately in another
application. In general, all components of the application will be used in all target
environments. There may be specific cases where application specific hardware interfaces
may change when transporting occurs. In this case, the software component that interfaces
with the hardware will also change.

Similarly, reusability does not imply transportability. A reusable component could be very
target dependent, e.g., an I/O package that is reusable across all projects on one target
environment, but unusable in any other target environment.

It is important to note, however, that transportability and reusabili:y are not mutually
exclusive properties. If it is desired to be able to reuse a component in application systems
that run on different target environments, then the component miist be designed for
transportability as well as reusability. Thus, a goal of maximizing reusability will usually
include transportability as a requirement.

3.2 Ada and Transportability

The Ada language does support many concepts which aid transportability. Among these
concepts are: abstraction, encapsulation, and information hiding. Abstraction and
encapsulation are supported by the package concept. Related subprograms can be grouped
together and seen by a higher levelas a single entity. Information hiding is enforced via
strong typing, and the separation of package and subprogram specifications from their

-7-

Transportability Guidelines for Ada Real-Time Software

respective bodies. Use of Predefined Language Attributes, found in Annex A of the RM [1]
also aid transportability.

On the other hand, the Ada language was designed to be implementation independent. The
designers of the language chose to do this to avoid tying it to current technology, so that
advances in technology could be readily accepted. Consequently, there are many places in
the language definition where implementers of the language are free to decide how a
language feature is to be performed (as long as the feature conforms to the rules of the
language). For example, the implementer is free to choose the mechanism of parameter
passing for composite types. This choice, and all the other choices the implementer makes,
may have both positive and negative effects on an application program especially in terms of
its performance and its transportability. If the application has stringent requirements for
either performance or transportability, then knowledge about the choices made in the
various implementations will be useful.

The areas where the lh.nguage definition has left the implementation details up to the Ada
compiler writers are called imnplementation dependencies. These are the areas to be
concerned about when writing software that is to be transportable.

I8

Transportability Guidelines for Ada Real-Time Software

4. Transportability Considerations for Real-Time Systems

This section discusses the interrelationship of transportability with real-time programming.
Principal objectives for real-time programs are to keep them simple and fast. These two
objectives are sometimes in conflict with the objective of transportability.

To enhance the transportability of embedded software, some techniques can be used to
reduce the dependence on the compiler implementation. In some cases, these changes will
actually improve performance at the expense of much more complex code. In other cases,
some performance degradation can be expected. Below are the areas identified where the
design can be modified to improve transportability. They are divided into two categories:
complexity tradeoffs and performance tradeoffs.

4.1 Transportability vs. Complexity

Runtime routines to support access type allocators and manage the storage for collections
vary significantly among implementations. By limiting the execution of allocators to
program initialization and defining application specific routines to allocate and deallocate
storage, a program can control the characteristics of the dynamic storage. This approach is
useful if the purpose of dynamic allocation in the application is primarily to manage storage
rather tharn trying to conserve on memory. The use of fixed size queues to manage the
storage will generally provide better performance and transportability, although it may
increase the complexity of the application software. A hybrid approach may be used to use
Ada allocators to initially obtain the storage accessible" via an array with elements of an
access type. After the initial allocation, the storage is managed as needed via explicit calls to
ALLOCATE and DEALLOCATE procedures defined in an application package. This can
eliminate any dependence on the ability of the runtime to efficiently allocate and reclaim
storage. This technique is not convenient when storage is shared among many different data
types since it will require unchecked type conversions of the access types. Also
unconstrained types are impractical to manage this way. Fortunately, there are many cases
where fixed size buffers need to be made available for some unspecified period and then
returned to a buffer pool. This type of application is fairly easy to implement and will
provide predictable behavior.

Another example of adding complexity is with file management routines. Temporary files
(as defined by Ada) need not be dcletcd in the same way by all implementations. Therefore,
rather than using temporary files, a specific mechanism to create a unique filename and
explicitly create and delete is preferable. This is unlikely to change the execution time
significantly but does require more programming effort. Problems may arise are in creating
a unique file name (that is suitable for many file systems), and making sure the application
defined "temporary" files are deleted, even when the program is terminated by an exception.

4.2 Transportability vs. Performance

Applications that process external files will have difficulty in transporting anything other
than strictly ASCII representations of data. By performing all input/output as ASCII text
sti,,gs, dependence on the binary representation of the types is removed. For enumeration
types, use 'POS/'VAL and transfer them as ASCII numbers. The following benchmark
measures the relative performance of writing integers as binary values as opposed to a more
transportable representation of ASCII numbers. The results of this benchmark indicated a

-9-

Transportability Guidelines for Ada Real-Time Software

2:1 performance degradation due to using ASCII values rather than binary. Note also tjhat
the file size was a factor of 3:1 for ASCII text compared to binary.

-- Transportability Performance Test

-- This test is designed to measure relative performance of two different

-- representations of integer data for the purposes of transportability.

-- TEST: Representation of Integer Data

The program writes out 10.000 values of an INTEGER type to disk and

-- the writes out the same data as TEXT so that it is more transportable.

-- Between each action the clock is read and the interval is displayed.

with Text10;

with Sequential 10;

with Calendar;

procedure Trans IO is

package BINARY 10 is new Sequential 1O(INTEGER);

BINARY-FILE : BINARY IO.FILETYPE;

package int 10 is new Text l0.Integerl0(INTEGER);

INTEGER-FILE : TextIC.FILETYPE;

INTEGER-VALUE : INTEGER := 1234;

START : Catenar.TIME;

STOP : Catendar.TIME;

BINARYTIME : DURATION;

TEXT-TIME : DURATION;

package Duration1 is new Text IO.Fixed IO(DURATION);

begin

BINARYIO.Create(BINARYFILE,BINARYI0.OUT.FILE,"BINARY.DAT");

Text IO.Put Line("Writing binary data:");

START := Calendar.Clock;

for I in 1..10000 loop

BINARY IO.Write(BINARY_FILE,INTEGERVALUE);

end loop;

STOP :z Catendar.Clock;

Text IO.Put Line(°'Sinary Data Written");

BINARYIO.Close(BINARYFILE);

BINARY TIME := Catendar."-"(STOP,START);

Text IO.Put('Time to Write BINARY data: SO);

Duration iO.Put(BINARYTIME); Textl0.NewLine;

-10-

Transportability Guidelines for Ada Real-Time Software

f4
Text IO.Create(INTEGER_F ILE,Text_10. OUT FILE, "iNT .DAT");

Text IO.PutLine(,'Writing text data:");

START :a CaLendar.Ciock;

for I in I..10000 Loop

!nt IO.Put(INTEGER_FILE, INTEGERVALUE);

end loop;

STOP :2 Calendar.Clock;

Text IO.PutLine("Text Data Written");

Text IO.Close(INTEGER FILE);

TEXT TIME :z CaLendar."-"(STOP,START);

Text IO.Put("Time to Write TEXT data: ,1);

Duration IO.Put(TEXT TIME); Textl0.New Line;

end TRANS_10;

Address clauses are not supported in a standard way among implementations. Typically,
what is desired is a linear p ysical address that will access hardware on the system bus. To
provide address clauses that are transportable, a function to translate a "uniform" addressing
ormat (32-bit linear physical address) to a implementation dependent System.ADDRESS

can be used. This will cause all address clauses to be nonstatic and therefore require that
indirect references be made to the object. The following program can be used to help assess
the overhead for references to objects located by nonstatic address clauses. The following
benchmark tests the performance penalty for using nonstatic address clauses. One
implementation failed to compile the benchmark (although static address clauses were
supported). The vendor indicated that this problem would be fixed in the next release.
Another implementation measured negligible performance degradation due to nonstatic
address clauses. By examining the. generated code, it was determined that this
implementation always referenced objects specified by address clauses indirectly.

-- Transportability Performance Test

-- This test is designed to provide insight into what relative performance

degradation is LikeLy to support translated addresses clauses (forcing

-- them to be nonstatic).

-- TEST: Address Clause Representation

The expression in address clauses is implementation dependent, yet

the primary reason for address clauses is to map program references

to specific HARDWARE addresses which can almost universaLLy be expressed

as a Linear 32-bit address (or some subst thereof). To enhance

-- transportability, all address clauses call be expressed as a function call

which accepts a 32-bit hardware address ind returns tle appropriate

-- implementation defined representation Sy.tem.ADDRESS.

with System;

-11-

Transportability Guidelines for Ada Real-Time Software

package TransportFunctions is

function Address (ADDR : LONG-INTEGER) return System.ADDRESS;

end TransportFunctions;

package body Transport-Functions is

function Address (ADDR : LONG-INTEGER) return System.ADDRESS is

begin

-- System.ADDRESS is derived from LONG-INTEGER

return System.ADDRESS(ADDR);

end Address;

end TransportFunctions;

with Text10;

with Calendar;

with System;

with TransportFunctions;

procedure Trdns ADDR is

START : Calendar.TIME;

STOP : Calendar.TIME;

STATIC TIME : DURATION;

NONSTATICTIME : DURATION;

package Duration_1O is new Text IO.FixedIO(DURATION);

-- first use implementation dependent approach

ADDR1 : INTEGER;

for ADDR1 use at 16#OCOOO#; -- static value

-- then use transportabte approach

ADDR2 : INTEGER;

for ADDR2 use at TransportFunctions.Address(16#DCOOO#); -- nonstatic

TEMPORARY INTEGER;

begin

Use at least 20 references to reduce time attributed to loop construct

START :z Catendar.Ciock;

for I in 1..10000 loop

TEMPORARY :z ADDR1;

TEMPORARY ADDRI; 2

TEMPORARY ADDRI;

TEMPORARY ADDRI; -- 4

TEMPORARY := ADDRI;

-12-

Transportability Guidelines for Ada Real-Time Software

TEMPORARY := ADDRI; -- 6

TEMPORARY :z ADORI;

TEMPORARY :u ADORI; -- 8

TEMPORARY := ADDR1;

TEMPORARY :s ADORI; -- 10

TEMPORARY :z ADOR1;

TEMPORARY :2 ADDR1; -- 12

TEMPORARY := ADORI;

TEMPORARY :2 ADOR1; 14

TEMPORARY := ADOR1;

TEMPORARY 2 ADDRI; -- 16

TEMPORARY :: ADDR1;

TEMPORARY :s ADDR1; -- 18

TEMPORARY :z ADDR1;

TEMPORARY := ADDRI; -- 20

end Loop;

STOP := Calendar.Clock;

STATIC TIME := Catendar.A-I(STOP,START);

Text IO.Put("Time to Read Object with Static Address CLause: ");

Duration ZOPut(STATICTIME); TextIO.NewLine;

START := Calendar.Clock;

for I in 1..10000 Loop

TEMPORARY := ADDR2;

TEMPORARY := ADDR2; "" 2

TEMPORARY := ADDR2;

TEMPORARY := ADDR2; -- 4

TEMPORARY = ADOR2;

TEMPORARY : ADDR2; -- 6

TEMPORARY :2 ADDR2;

TEMPORARY := ADDR2; -- 8

TEMPORARY := ADOR2;

TEMPORARY :2 AODR2; - 10

TEMPORARY : ADDR2;

TEMPORARY :: ADDR2; "" 12

TEMPORARY := ADDR2;

TEMPORARY := ADDR2; -- 14

TEMPORARY : ADOR2;

TEMPORARY : ADDR2; -- 16

TEMPORARY : AODR2;

TEMPORARY : ADOR2; -- 18

TEMPORARY :1 AODR2;

TEMPORARY ADDR2; -- 20

end Loop;

STOP :* Calendar.C(ock;

MONSTATICTIME := Catendar."-"(STOP,START);

TextIO.Put('Time to Read Qoject with Nonstatic Address Clause: ");

Duration IO.Put(NONSTATIC TIME); TextlO.NewLine;

end TRANSADDR;

-13-

Transportability Guidelines for Ada Real-Time Software

Exception propagation time is extremely implementation dependent. To avoid using
exceptions for errors that can be expected, if statements can be used to check for errors that
might otherwise be processed by exception handlers. This will give more consistent timing
to program execution since dependence on exception propagation is eliminated. The
following benchmark assumes some data is being obtained from a hardware device.
Although the range is acceptable on input, occasionally an offset has to be added. If the
hardware is working properly, this addition would never result in an exception. Rather than
depending on the exception and the associated overhead, the error condition is explicitly
tested. The additional overhead for the check necessary to detect the error and the check to
catch propagation of the error are being measured. The cost of this approach is highly
dependent on how many checks must be made, and the size and nesting level of procedures
which perform the checks. Also, if the error flag(s) are passed as parameters rather than

loballv accessed, additional time would be consumed. Note that if exceptions are only used
tor serious failures and the response time from such an exception is not critical, the normal
Ada exception mechanism is preferred over the "flag" approach.

Transportability Performance Test

-- This test is designed to provide insight into what relative performance

degradation is likely to support provide manual checking of subprogram

-- result conditions as opposed to using the built in Ada exception

-- mechanism.

-- TEST: Exceptions for standard error condition reporting

-- This test is designed to manually test a flag as opposed to using

-- exceptions to get more consistent error handLing performance wten

-- transported.

with Text_1O;

with Calendar;

procedure Trans Except is

-- TIMING DECLARATIONS

START : CaLendar.TIME;

STOP : Catendar.TIME;

EXCEPT-TIME : DURATION;

FLAG-TIME : DURATION;

package Duration-tO is new Text IO.FixedIO(DURATION);

ERROR CONDITION : BOOLEAN :a FALSE;

-14-

Transportability Guidelines for Ada Real-Time Software

type TEMPERATURE-TYPE is range 0..1000;

NORMAL VALUE : TEMPERATURE TYPE :a 10;

RESULT : TEMPERATURE TYPE;

Limit : constant TEMPERATURE-TYPE :a 800;

OFFSETTEMP : constant TEMPERATURE-TYPE := 200;

sample procedure would normally process an incoming temperature

from a hardware device, which can typically range from 0 to 1000
degrees, but this procedure requires the temperature to be 0 to 800

-- degrees.

procedure DOSOMETHING(UNKNOWN INPUT : TEMPERATURE TYPE) is

begin

if UNKNOWN INPUT) limit then

ERROR CONDITION := TRUE;

return;

else

RESULT :x UNKNOWN INPUT + OFFSETTEMP;

end if;

end DO SOMETHING;

procedure DOSOMETHING2(UNKNOWNINPUT : TEMPERATURE TYPE) is

begin
RESULT :* UNKNOWN-INPUT + OFFSETTEMP; -- simply do it, Let exception occur

end DO SOMETHING2;

begin
Text IO.PutLine("Running Exception Benchmark");

START :a CaLendar.Ctock;

for I in 1..10 000 000 loop

DOSOMETHING(NORMALVALUE);

exit when ERROR-CONDITION; -- any check for exccption in procedure

end loop;
STOP := Calendar.CLock;

FLAG-TIME := Catendar."-"(STOP,START);

Text IO.Put(',Time for transportable exception handling: ");

Duration IO.Put(FLAGTIME); TeAt_lO.NewLine;

START :a Catendar.Ctock;

for I in 1..10 000 000 Loop

DOSOMETHING(NORMALVALUE); no check necessary, depend on exception

end loop;

STOP :z Calendar.Clock;

EXCEPT-TIME :z CaLendar."-"(STOP,START);

TextIO.PutC"Time for normal exception technique: ");

Duration IO.Put(EXCEPT_TIME); TextiO.NewLine;

end Trans Except;

- I5-

Transportability Guidelines for Ada Real-Time Software

5. Transportability Guideline

The following guidelines were produced-from studying the implementation dependencies
allowed within the Ada language and from utilizing work performed prior to' this effort ([2],
[3], [11]). The Catalogue of Ada Runtime Implementation Dependencies [9] details the
areas of the Ada language where the Ada implementers could make design decisions as to
how a particular language feature was implemented. The catalogue should be consulted as a
further reference to this work.

It is important to reiterate the fact that this guideline is concerned with handling the
implementation dependencies allowed within the Ada language to achieve transportable
real-time embedded software. Previous guides provided useful transportability guidelines
for the language constructs, in general. It is not our intent to duplicate this work, although
there will be some overlap. The reader is referred to these reports for additional
information if needed. [2] [3][11]

Previous guidelines typically attempted to completely restrict programs from using any
implementation dependent features of Ada. Because of the large number of
implementation dependencies, this "Greatest Common Divisor" approach is inadequate for
real-time embedded applications. This guideline instead insists that the implementation
requirements of the application are clearly specified in the source code. For example, if a
calculation requires a range of 1 to 70,000, this range must be specified for the types of those
objects. In this way, no assumptions are made with respect to capacities of the target (in the
example, the range of type "INTEGER"). Rather, they are verified by the compiler for each
tar et. This restricts transportability to compilation systems that fully support the source
cooe specifications. In practice this does not reduce the number of useful implementations,
since it is unlikely the real-time system would operate if the specified capability was not
properly supported and had to be constructed from other primitives.

The implementation dependencies were analyzed to determine which dependencies are
most likely to create a transportability problem. These selected dependencies were further
analyzed to determine how programs could be specified that would limit the impact of their
use. Where appropriate, benchmarks were written to determine what impact the more
transportable approach had on execution performance. Cases where the language does not
permit a translation were identified, and for these cases the most common implementation
approach was determined using vendor documentation and benchmarks (see Appendix A).
This information was synthesized and used to produce the following list of guidelines.

The general strategy is to improve the transportability of real-time programs by addressing
five major areas of concern:

1) Eliminate the need for and use of Implementation Dependencies wherever practical.

2) When dependencies are required to meet system requirements, provide a translation
from a more universal approach to the iniplementation specific approach wherever
possible. The translation function(s) would then require modification for each transport.

3) When translations are not possible, use th;! simplest and most conventional approach
available. Document these so that the work of transporting the software is clearly
understood. Pay special attention to depend mcies that could be interpreted incorrectly
(and without any warning) by some compilation systems.

-16-

Transportability Guidelines for Ada Real-Time Software

4) As always, a clear design and good documentation provide the best assurance that a
program can be maintained, including transporting to new runtime environments. If ease
of transportability is especially critical, the program should be targeted to two different
processor architectures concurrently during the initial development effort. This will help
to provide identification of problems that restrict transportability in time to correct them.
Al documentation related to transporting should be collected in a document titled
'Transporting Manual". This manual serves as a collection point for implementation
dependent requirements that can not be verified by the compiler. Areas identified in this
manual should be given priority during the transporting effort, as they are likely to be the
most serious to resolve. Specifically including in the manual is the 'Transportability
Requirements Report" (see Appendix B) which summarizes the major implementation
dependencies of the application.

5) When possible, application specific hardware that interacts directly with the software
should be moved to the new target system along with the software. If this is not feasible,
the transported software will have to be modified to work with the new application
specific hardware. To facilitate this, modularize all application specific hardware
references so that it can be replaced easily and dependencies on it can be identified.

Before attempting to transport software, there are minimum requirements for both the
original target compilation system and the destination target compilation system.
Transporting software in their absence is extremely risky from both reliability and
cost/schedule perspectives. These include:

Pragmas that do not achieve their desired functions must generate a warning message.
This includes pragma "PACK", where full bit packing density is not achieved.
All representation clauses should be supported to the extent that is reasonable for the
target processor.

A reliable approach to determining task stack size must be supported.

Also, a method to obtain intermixed listings of Ada and machine code is frequently a
necessity, especially if reliability is a concern.

Specific recommendations are divided into categories to which they are most related.

5.1 Erroneous Programs and Incorrect Order lDependencies

An erroneous program is a program that is incorrect, but detection is not required by an Ada
compiler. In some cases execution will raise "PROGRAM ERROR".

Guide(01): Programmers should be aware of what mechanisms produce erroneous
programs. Care must be taken to avoid these mechanisms. Checks For those constructs
should be included in code walk-throughs. The checklist should include:

-I7-

Transportability Guidelines for Ada Real-Time Software

- Reference to uninitialized variables
- Unsynchronized access to shared data
- Access of deallocated objects
- Invalid unchecked conversions
- Invalid change of a discriminate value
- Dependence on parameter passing mechanism
- Multiple address clauses for overlaid entities
- Invalid suppression of exception check
- Possibility of all accept alternatives closed in a selective wait without else
- Reaching end of function body (without return)

An incorrect order dependency is a specification for some constructs that are to be executed
in some order that is not defined by the language. This means the implementation is
allowed to execute these parts in any given order. Therefore, different implementations can
produce different results.

Guide(02): Incorrect order dependencies should not exist in well designed programs. The
following is a checklist where incorrect order dependencies can occur. Check for:

- Evaluation of default expressions - RM 3.2.1(15)
- Range constraint evaluation - RM 3.5(5)
- Index evaluation order - RM 3.6(10)
- Component subtype elaboration order - RM 3.6(10)
- Index constraints - RM 3.6.1(11)
- Discriminate checks for incomplete types - RM 3.7.2(5)
- Discriminate evaluation order - RM 3.7.2(13)
- Elaboration checks and parameter evaluation - RM 3.9(5)
- Evaluation of an indexed component - RM 4.1.1(4)
- Evaluation of a slice - RM 4.1.2(4)
- Evaluation of the component expressions of a record aggregate - RM 4.3.1(3)
- Evaluation order of component associations - RM 4.3.2(10)
- Order of constraint checking - RM 4.3.2(11)
- Evaluation of operands in an expression - RM 4.5(5)
- Assignment statement evaluation - RM 5.2(3).1, 5.2(4)
- Order of evaluation of parameter associations - RM 6.4(6)
- Order of parameter copy-back- RM 6.4(6)
- Task activation order - RM 9.3(1)
- Guard condition evaluation - RM 9.7.1(5)
- Evaluation of delay expression or entry family index - RM 9.7.1(5)
- Selective wait alternatives - RM 9.7.1(6)
- Scheduling order of tasks - RM 9.8(5)
- Order of abortion - RM 9.10(4)
- Elaboration order of compilation units - RM 10.5(2)
- Elaboration of generic instantiations - RM 12.3(17)

5.2 Storage Issues

Guide(03): If memory space is limited, determine how specific the linker (binder) is when
selecting data and code for inclusion into the executable image. This often is different for
runtime support routines and application routines. Some implementations load the entire
package even if only one data object is referenced. Others select only what is referenced.

-18-

Transportability Guidelines tor Ada Real-Time Software

Guide(04): For array types which must have exact storage layout requirements, use a length
clause for the entire object and insure that the number of elements multiplied by the bits
specified (or required) for all possible values of the element type is exactly equal to the
number of bits specified in the length clause. If a record is specified as the element type, use
a record representation clause to completely specify the layout.

ExapLe:

type COLORTYPE is (RED.BLUEJELLOWJ,ORANGE);

for COLORTYPE'size use 2;

type COLORARRAYTYPE is array(1..5) of COLORT PE;

for COLOR ARRAYTYPE'size use 10;

This forces the upper bound to be 10, and sine 5 (five) 2-bit elements are required to store
the necessary information, the lower bound is also 10 bits. Note: pragma "PACK" is the
preferred approach to obtaining the desirel bit density for arrays (see Guide 7 and
minimum requirements listed above).

Guide(05): Jf access types are used, verify that sufficient space is made available for each
access collection. This should be done using a length clause on the "STORAGESIZE"
attribute.

Guide(06): If tasking is used, verify that sufficient space is made available for task activation.
This should be done using a length clause ofn the "STORAGE SIZE" attribute. Always
explicitly state the storage requirement for each task. This implies that all tasks are defined
as task types. It is best if all storage requirements are specified in terms of bytes multiplied
by the quotient of the number of bits in a storage unit divided by eight. For example, if 100
bytes are required, specify:

for T'STORAGESIZE use 100 * (System.STORAG,-uNlT/8);

This provides a consistent approach to allocating storage as bytes. Confusion could
otherwise result when one implementation uses bytes as the storage unit, and another uses
words (two bytes).

Guide(07): If pragma "PACK" is used, \erify that it is supported in the same way on the
original and new target implemnenations.

Guide(08): Dependence on the "STORAGI2 ERROR" exception is not advised. It is
unclear what resources are available to the-application after such an error has been
detected. If its use is reqtuired, care must be taken to force deallocation of sufficient storage
as the first portion of the handler. This may be achieved though explicit
unchecked deallocation reqtuests, or by leaving the scope of a block to free up both heap
and stack space.

5.3 Performance Issues

Guide(09): If pragma "SUPPRESS" is used, ,erify that it has an effect and th1i the
performance improves.

-19-

Transportability Guidelines for Ada Real-Time Software

Guide(10): Use of package "MACHINE CO))E" should be strictly controlled and
delineated by configuration management.- (;ood documentation and brevity of the
subprograms is extremely important.

Guide(l1): If pragma "INLINE" is used, insure that the compiler generates a warning if the
desired effect is not achieved. The disassembled programs should be examined to verify the
quality of the inlined subprograms as well as general code generation quality.

Guide(12): Be aware that some implementations have substantial overhead associated with
the elaboration of block statements. Use them with some discretion.

Guidc(13): Exception propagation overhead varies considerably vmong implementations. If
possible do not expect fast exception propagation. If this is required, then the specific
performance required must be documented in the Transporting Manual. Avoid the use of
user defined exceptions as flags. More consistent timing is achieved by the direct use of
variables for (boolean) flags, although the explicit checking of flags may consume more
execution time in the typical case. Exceptions should be used for truly exceptional
conditions (things that are never expected to occur, but may because of hardware failures or
software design errors).

Guide(14): Do not use implementation-defincd exccptions. [3] There is no consistency
among different compilation systems.

Guide(l5): Aggregate assignments both in el!boration and execution code vary widely
between implementations. Establish benchm: rks appropriate for your application that
indicate major changes in time/space for these operations.

Guide(16): Are exceptions raised where respc.nse tothe exception must be handled in
real-time? Be aware that exception handling overhead can very greatly as a function of
compiler and/or linker switches that support exception trace-back capability.

Guide(17): Measurements should be done on the execution time of every procedure as well
as each rendezvous. Best, worst, typical, and iverage times should be recorded for each
item. These should be preserved and comparcd during the transporting effort. All tests
should be run with the compiler and linker options %,hich will be used for both testing and
sv,;cm delivery. Note that turning the optimizcr on has frequently been observed to slow
down some portions of the code, and may even result in a net performance degradation. For
example, this can occur if temporaries are gener:ted to save index calculations which are not
referenced more than once.

5.4 Tasking Issues

Guide(18): Selection of the scheduling algorithm is totally non- standard. Generally all
useful implementations support as a default : "run 'till blocked (RTB)" scheduler thatsupports at least 16 levels of priority. This implies that a task will run until it is suspended
waiting for I/O, a rendezvous, a delay, or until preempted by a higher priority task. Many
implementations also support various flavors of time slicing, including a mixture of
timc-sliced and RTB. It is advisable to keep thle tasking requirements on the runtime as
simplc as possible, since taking advantage of th_2 more complex features may unnecessarily
limit transportability if they are not absolutely iequired. Always explicitly state the priority
of each task, including the main procedure. I se a configuration file t6 define all of the

-20-

Transportability Guidelines for Ada Real-Time Software

priority constants, which should be specified in terms of priority'last and predecessors of
each other.

Exampte:

with System; use System;

package Config is

Priorities of aLt tasks in order from highest priority to Lowest...

graphicspriority constant PRIORITY :a PRIORITY'Last;

operator priority constant PRIORITY PRIORITY'PREO(graphicspriority);

rocketpriority constant PRIORITY PRIORITY'PRED(cperator priority);

Guide(19): Do not depend on task activation to occur at the higher priority of the activator
or the task being activated. This restriction mziy change in Ada9x (the future revision of the
language).

Guide(20): It is advisable that each task have an "entry Synchronize" that is signaled as a
consequence of the main program execution. E-ach task would "accept Synchronize" as their
first statement. This allows much more user control over the "start up" of tasks declared in
the outermost level of a library package. Since these tasks are activated in order of
elaboration, they tend to start execution in an order defined by the compiler. In any case,
liberal use of pragma "ELABORATE" is suggested to insure the library-level tasks do not
call package procedures before their bodies are elaborated.

Guide(21): If the main program terminates via an exception handler, it should abort any
library-level tasks. This insures that the library tasks will terminate (assuming abort is
implemented asynchronously). Generally, a program with library-level tasks should only
provide initialization code in the main procedure.

Guide(22): Be aware that task abortion may or may not take place immediately. If it is
important that a particular implementation approach is depended upon, then this must be
clearly stated in the design. Tasks rnay continue to execute indefinitely even after being
aborted on certain implementations.

Guide(23): Only specify one ta.,,k per abort statement. This forces an explicit order of
abortion.

Guide(24): Dependence on rendezvous optinii/ations is an unfortunate reality for real-time
programs. Obviously, limiting the rate at which rendezvous occur is a design goal to reduce
the dependence on compiler optimizations. The use of implementation defined pragmas to
indicate specific optimizations should be alloted when absolutely necessary. Often, similar
but not identical pragmas are supported hy se\ eral implementations. An example of this is
the execution of an interrupt accept tod directly without requiring a full task context
switch. This can significantly reduce huith the latency and overhead associated with

-21-

Transportability Guidelines for Ada Real-Time Software

processing high-rate interrupts. On the other hand, if the additional processing of a
conventional context switch can be tolerated, it is preferable to omit specifying any
optimization. If optimization is require-d, insure that the restrictions indicated for the
pragma are observed. There is generally no checking performed by the compiler to insure
the code meets the restrictions, and erratic behavior gnerally results if they are violated.

Guide(25): Do not depend on "delay 0.0" to result in a scheduling event. That is, for a Run
'till Blocked scheduler, many implementations will treat "delay 0.0" as a request to put the
current task on the end of the "ready" list, allowing other tasks to potentially execute.
However there is no assurance that this is done for all implementations, and some may
optimize very small delays into tight timing loops or clock polling loops. Unless this
dependence is clearly indicated, a "working" program may cause task starvation in a new
runtime environment during heavy loading conditions.

Guide(26): Do not expect delay resolutions of Less than 5nis. Most implementations allow
configuration of the delay resolution, but at the expense of receiving and processing a timer
interrupt at the minimum interval. This will ,isually result in excessive overhead if the
required resolution is below a few milliseconds.

Guide(27): If more than one delay alternative is specified in a selective wait, do not depend
on which orie will he taken in cases where their XaLues are (nearly) the same.

Guide(28): Use pragma "SHARED" for any scal-r vlariables accessed by more than one task.
If the pragma is not supported for that type, either change the program so the shared
variable is not necessary, or manually maku accesses to the variable atomically by
disabling/enabling interrupts. Be sure that no exception is possible during the period
interrupts are disabled. When accessing non-scaler types, make sure that reads and writes
are performed as atomic actions by viewing the ienerated code.

5.5 Interrupt Processing Issues

Guide(29): Do not allow a task that contains int,'rrupt entries to terminate prior to disabling
the interrupt source. Failure to do so may alluw the interrupt to arrive and subsequently
execute the corresponding accept body after the task has terminated. This includes the use
of a terminate alternative within the interrupt handler task.

Guidc(30): For tasks with interrupt entries, always reserve the highest software priorities for
these tasks. This will help to insure that the task can return to the accept statement without
being preempted by other software tasks. Note that ilthough the accept body is executed at
the "interrupt priority", after the accept statement the priority resumes to the previous
software priority. This is true even if the only state:nent outside the accept statement is a
"loop ... end loop;". Many implementations optimi -e away this construct, yet this is not
guaranteed. The software priority should be as, ignedl according to the urgency in which the
next interrupt could arrive in relation to other irterru)t tasks.

Guide(31): Generally it is not recommended to -)erform an unconditional rendezvous within
an interrupt accept body. If the accept body is suspended during an interrupt, the state of
the hardware may preclude other interrupts frot i being serviced. Most implementations that
suppo(rt interrupt entries also provide some ca-iability to signal other "support" tasks from
within an interrupt task. Read the docuvment.ition carefully since they may also require
certain restrictions. As always, use the simplvst approach available that will meet your

Transportability Guidelines for Ada Real-Time Software

requirements. Use of a parameterless conditional entry call is recommended. If shared data
is modified by an interrupt task, the corresponding interrupt should be disabled while
accesses are made from other tasks.

5.6 Numeric Issues

Guide(32): Do not depend on "NUMERIC ERROR". Wherever "NUMERIC ERROR" is
expected, always use "CONSTRAINT ERROR I NUMERIC ERROR". Tie language
maintenance process has established -an approved language interpretation (#387) that
states:

Wherever the Standard requires that WUMERICERROR be raised (other than by a raise statement),
CONSTRAINT-ERROR should be raised instead.

This interpretation is non-binding."

The fact that the interpretation is non-binding, means that it is implementation dependent.

Guide(33): Always make sure that each calculation can be performed within the range of the
base type 6f the operands. Some implementations may perform intermediate calculations
with a larger range than required by the Ada language standard, but small variations in the
runtime environment could change this (including an optimize phase). For example:

type SMALL-TYPE is range 1..100;

VARI SMALL-TYPE := 4;

VAR2 SMALL-TYPE :z 80;

VARI :1 VARI * VAR2 / 10;

The above assignment may work for a while producing the correct result of 32, but after an
-'imize phase or transporting, the intermediate result of 320 may cause an exception.

'.-cfine the base type to be large enough to Sutpport all calculations, then use subtypes for
object declarations. See RM 11.6(6)

Guide(34): Provide sufficient explicit checks to insure that overflow conditions do not occur.
Do not depend on the Ada implementation to detect an overflow condition. Besides the fact
that it may be necessary to suppress checks to obtain performance, some implementations
simply do not suppot overflow detection.

Guide(35): Do not use equality comparions for floating point types. Instead, subtract the
two operands and compare the difference to be less than some allowable value. This
difference should exceed the greater model interval of the types. See RM 4.5.7(10).

Guide(36): If errors are possible due to the rotnding algorithm used when converting real
types to integer types, code in.st be included to provide explicit rounding. This may take thc
form of a generic "Round" function that is used whenever converting real types to an integer
type. If possible, avoid dependence on a particular rounding convention. See RNI 4,0(7).

-23-

Transportability Guidelines for Ada Real-Time Software

Guide(37): If errors are possible due to the rounding algorithm used for the real predefined
operators types, the type should be defined with additional digits of accuracy, or additional
code should be added to compensate for accumulated error. Note that the attribute
"MACHINE ROUNDS" is more helpful when it is "TRUE", because real operators may still
perform roufding in some cases when it is "FAISE".

Guide(38): Do not use the predefined numeric types. Define a package 'Types" for the
aplication dependent standard types based strictly on the ranges and accuracies required
(for example: "type ROAD LENGTH TYPE is range 0..37000;"). Careful attention to
correctly specifying the required accuracy and range of numeric types is essential for
transportability. Implementations may compute different results, but are required to be
within the accuracy constraints imposed on the real types. This implies that if the real types
are defined properly, the application should operate correctly on all configurations which
can support those types. Implementations that cannot support the type are obliged to reject
the program during compilation. Note that the predefined type "STRING" and many of the
I/O subprograms use the predefined "INTEGER" type. You will have to convert from the
application integer types to "INTEGER" if you ue them.

Guide(39): Most implementations do not support fixed point type length clauses for T'Small
that are not a power of two. Inform the hardware designers of this limitation and request
that hardw',re values be supplied as a power of two. For example, temperatures should not
be in tenths of a degree (0.1) but rather in eighths (0.125) or sixteenths (0.0625). One
alternative is to read the values as integers, and then immediately convert them to an
appropriate fixed point type while applying the necessary scale factor. This will of course
reduce the accuracy of the values somewhat. The other alternative is to implement a scaled
integer arithmetic package, which is not easily done and can result in performance problems.

Guide(40): It must not be assumed that a static expression is evaluated with the same
accuracy than that of the model numbers of a particular real type. An implementation is not
required to produce the same value for a static expression by compile-time evaluation on a
host computer system as it would produce for the same expression at runtime on the target
computer system. These values are only required to be in the same model number interval.
The consequence of this potential imprecision makes the results of comparisons
implementation dependent.

5.7 Subprogram Issues

Guide(41): Since parameters of composite types may he passed by reference, multiple access
paths are a potential for these objects. Insure that every composite type passed as a
parameter is never passed more than once during the invocation of a subprogram (or accept
body) and is not accessed as a global variable within the subprogram or accept body. This is
especially true of recursive subprograms, since the behavior depends on whether or not the
object is copied or simply a reference is passed. Special care must be taken when writing
generic software for which the type is not known.

Guide(42): If return types from functions are unconstrained, verify that any storage created
for such objects is always deallocated after the function call.

Guide(43): Alwavs assign a value to out mode parameters for procedures. See RM 6.2(5)

-24-

Transportability Guidelines fo r Ada Real-Time Software

Guide(44): Most embedded systems do not exe zute commands which invoke Ada programs,
however it is possible that some control over pr)gram invocation may exist. For example, an
embedded system may have a general purpose network driver which can accept commands,
load an Ada program and execute it. If comm; nd line (invocation) parameters are used for
the main program, application access to therr should be strictly hidden by an application
defined subprogram.

Guide(45): Functions should not have side-e fects. This eliminates the vast majority of
situations where order dependencies occur If they are necessary, they should be
documented to clearly indicate all possible sid, -effects. Such a function should not be used
in a statement with any of the objects it modifit s, or with any other function (including itself)
which modifies the same objects. If they must be in the same statement, insure that if any
valid order is chosen, the results will be corre :t with respect to the accuracy requirements
and that the execution timing is essentially tl e same. Note that even though all possible
results may a ppear to be "sufficiently corre, t", it is still better to eliminate the order
dependency. The slight difference in results may effect the flow of the program, and
therefore result in latent design errors becoming active.

5.8 Input/Output Issues

Guide(46): Assume as little as possible about the I/O support available. [3] If file storage is
required in the application, Ada source code for the file system should be available and
should be based on common (i.e. 512-byte) blck oriented access schemes that are usually
supported directly by the hardware. Most bare targets have little if any I/O support,
especially for file oriented I/O.

Guide(47): If temporary files are created, use an application program to generate a unique
name rather than using a null string as the file name. Always explicitly delete these files
prior to termination. If this is impractical and standard temporary files must be used (i.e.
null string names), insure that the system automatically deletes them. If not, provide some
method to achieve the same effect. The status of a temporary file is unknown after it is
closed. That is, some implementations may delete it immediately. Use the "Reset"
procedure to access information in temporary files. The "Name" function should not be used
to obtain the name of a temporary file since it may raise "USEERROR".

Guide(48): Requiring interchange of any files between two runtime environments has a high
probability of making a program non- transportable. This is because the I/O packages
instantiated for types may have different representations as they are stored in the file. The
problem generally occurs when a database is maintained by a program. Note that the
runtime environment change could be caused by any recompilation of the program. Since
the compiler is free to choose the default representations of data objects, a new optimize
phase may result in a different representation for a type. This would cause the program to
misinterpret the data written out by a previous execution of the same program. What is
even more likely is the simultaneous sharing of a database by different releases of the same
program or even different hardware environments. This is typical of a factory automation
situation where data logging and manufacturing parameters are maintained over a period of
time by a central data base and updated and referenced hy several work stations connected
by a network. If file interchange is required between the original program and the
transported program, it is suggested that a standard file format be specified and
representation clauses used to help achieve the standard format. Another approach is to
write all data in a standard ASCII text format, although the overhead associated with this

Transportability Guidelines for Ada Real-Timie Software

approach is usually too great for a real-time pro'gram. If this approach is used, avoid use of
"the "END OF LINE", "PAGE", and "END OF FILE" delimiters. Instead, substitute with
application" def'ned representations for the'se ter-iiinators. Finally, it may also be possible to
provide conversion programs that provide one-time or on-demand translation of a shared
data base to the required format.

Guide(49): Be especially cautious of performing I/O on access types or unconstrained types.
Access types will typically not be of value from one program execution to the next, since they
are frequently memory addresses which are no longer meaningful after the program has
terminated. Unconstrained types must provide constraint information in addition to the
data when transferring between files and memor'. The format of this constraint information
is not standard among implementations and there is no way for an application program to
specify a particular format. See RM 14.1(1) and 14.1(7).

Guide(50): Concurrent sharing of external files s extremely implementation dependent. If
possible, design the program so this is not necesarv. If sharing is required, document the
requirement and provide details as to how the fi e(s) are shared. This includes a single task
opening the same external file twice, more than one task opening the same external file, or
more than one program opening the same external file. The same holds true for deleting
shared files. See RM 14.1(13). It is recommended that a "niolitor" task (or program) be
used to proVide access to shared files.

Guide(51): If possible, use file names that beuii with an alpha character and contain only
alphanumeric characters. Ideally, file names ,hould be kept to eight characters unless
confusion can occur as to the purpose of the file. Avoid use of the "FORM" parameter
except when absolutely necessary.

Guide(52): Do not depend on the raising f "DATA ERROR" while reading files.
Implementations are allowed to omit checks f(r data corfectness. See RM 14.2.2(4) and
14.2.4(4).

Guide(53): Always close files prior to program tc mination. See RM 14.1(7).

Guide(54): Do not depend on a specific repre'.entation for "LINE", "PAGE", and "FILE"
terminators.

Guide(55): For interactive devices and "GET L NE", be aware that some implementations
wait for additional characters to be entered atte the line terminator to check for a page or
file terminator. Verify the operation of thc target runtime system to ascertain its
characteristics. This additional wait is considered an undesirable approach to text input and
the vendor should be advised of the problem. Note that this is separate from waiting when
an explicit call to "End Of File" or "End Of Page" is made. Implementations have little
choice but to wait until s'-omE input is availableTor these functions.

Guide(56): Many systems buffer input and ou'put. This may effect the timing and the
presentation order of data (especially when two tasks share a console). Devices shared by
tasks should have their access serialized by pro.'iding a task as an interface to the device.
Any buffering mechanism that is required Cor proper program execution must be
(ocumented.

5.9 Other Issues

-26-

Transportability Guidelines for Ada Real-Time Software

Guide(57): Avoid use of implementation defined attributes, types, and exceptions. For
example, if a 16-bit "WORD" type is defined in package "System", define an identical type in
the application's 'Types" package to use-in its place. Using implementation dependent
aspects of package "System" is a very common mistake which causes serious transportability
problems. It can even cause difficulty with the use of Ada-PDL processors, since they may
not allow redefinition of package "System".

Guide(58): Use only ISO seven-bit coded characters. Some implementations allow the 8-bit
character set within comment fields, but this is not accepted by all implementations.
Alternatively, provide a preprocessor that removes these characters or substitutes some
corresponding string prior to compilation.

Guide(59): Restrict representation clauses for enumeration literals to unsigned integers.

Guide(60): Always initialize a variable prior to referencing it. This is simply good
programming practice. Be careful to realize that passing a variable as an in or in out
parameter is equivalent to referencing, even if the variable will not be referenced prior to
assignment in tiie subprogram. This practice does not imply that all variables must be
provided with an initial value (at the time of declaration) however.

Guide(61): Document the bit ordering used for all record representation clauses. These are
not standard and are likely to have an impact during transporting a program. It may be
desirable to develop a source code translator that will translate from one bit ordering to
another, provided component clauses are defined in a uniform way. Most microprocessor
hardware conventions refer to bit zero (0) as the least significant bit. Therefore it is helpful
to document the application requirements in terms of least significant and most significant
bits rather than using terms such as "left" or "right" which are meaningless in this context.

Guide(62): Do not reference generated names for implementation dependent record
components. See RM 13.4(8).

Guide(63): Whenever practical, isolate implementation dependencies within separate
compilation units. This modularization helps to identify dependencies and facilitates
modifications to them. Use the package facilitv to encapsulate these implementation
dependencies. [11] This is the preferred technique for isolating implementation
dependencies when you must use them.

Guide(64): Provide fully expanded names for all objects not defined in the immediate
compilation unit. This does not include references to functions defined by operators or
objects declared by the Ada language standard. Be careful to expand names of objects
declared in package "System", but not explicitly identified in the Ada language standard.
Also, references to objects that are declared in ancestor units (parents of subunits) which are
immediately visible should still be fully expanded. This will not directly effect
transportability but is often essential to program comprehension and maintenance.
Therefore it also is beneficial to transporting programs that require some modification.

Guide(65): Avoid use of languages othcr than Ada. Mixing language creates at least two
problems: the transportability of the other language(s), and transportability of the
conventions and interfaces between Ada and the other language(s).

-27-

Transportability Guidelines for Ada Real-Time Software

Guide(66): "Unchecked Conversion" should only be used for statically constrained types of
the same size. If sizes ire different, create a record type with the same size of the larger
type, and provide explicit values for the additior'al fields when converting between the large
type and the created record type.

For example:

type LONGCONVERTTYPE is

record

LOWWORD Types.WORD; -- 16 bits each

HIGHWORD Types.WORD;

end record;

for LONG CONVERT TYPE use

record

LOW WORD at 0 range 0..15;

HIGH-WORD at 0 range 16..31;

end record;
for LONG CONVERTTYPE'size use 32;

function WordToLong is new

UncheckedConversion(LONGCONVERTTYPE,Types.LONGWOID) -- s3me size

WORD DATA Types.WORD; -- 16 bit,

LONG-DATA Types.LONdG_WORD; 32 bit,

LONG DATA := Word To Log((WORDDATA,O)); -- always zro fitl high word!

-- (no sign extension)

Guide(67): Do not reference "System.MEMOR Y SIZE". This has no consistent definition
among implementations. What might be more i seful is to define functions which return the
amount of storage currently available for allocitors (heap) or for subprogram invocation
(stack). This might be helpful in allowing progi ims to take advantage of available memory
for allocating more objects or deeper nesting)f recursive subprograms. These functions
would most likely require modification of the I intime to implement however. This leaves
embedded systems no iransportable way to resp, nd to the amount of memory available.

Guide(68): Modifications to the vendor supplieJ runtime must be clearly documented and
categorized as application related or target processor related. It is generally preferred to
make any modifications in the form of subprograms that are called by the vendor runtime
rather than making changes directly to the runtume code. This of course is only practical if
the runtime is sufficiently modular.

Guide(69): Add a field in the documentatioii template for each package, procedure,
function, and task indicating if any non-transportable features are present. In addition, for
each non-transportable feature employed, provide a detailed description of the expectations
for that feature. If possible, this comment should be extractable by a tool for placement in
the Transporting Manual.

-28

Transportability Guidelines for Ada Real-Time Software

6. Summary

The ability to transport programs among different processor technologies is essential in the
maintenance of embedded systems. The benefit of being able to upgrade processor
hardware and/or compiler technology over the lifetime of embedded systems is substantial.
Not only can processing throughputbe impro\ ed, which is often necessary to add software
capability, but it can reduce the difficulty in)btaining parts for obsolete technology. By
extending the useful life of these systems, cost iavings can be achieved while modernization
makes the system meet new requirements (hreats) much more quickly. Furthermore,
transportability of embedded software is (ften required for the reuse of software
comporents which can be shared among simila embedded application areas.

This handbook provides guidelines to improvt the transportability of real-time embedded
applications software. Although it is not practical to achieve 100% transportability, it is
reasonable to obtain sufficient processor independence so that transporting to higher
performance targets is cost effective. This ability is essential if target processor selection is
deferred until system integration time.

Although implementation dependencies are generally to be avoided, when specific
characteristics are required of the compilation system it is preferred to explicitly state them
in the source code. They typically take the form of representation clauses which force a
particular representation rather than dependin- on the compilation system's default. In this
way, other compilation systems can either comply with the request or reject the program.
This reduces the likelihood that the transported program will execute incorrectly in very
subtle ways.

Transportability Guidelines for Ada Real-Time SofWa'

7. References

[1] Reference Manual for the Ada Programming LnRguce.ANSI/MIL-STD-1815.\-1983,
American National Standards Institute, Inc., 1983.

[2] Nissan, Wallis, Wichmann and others, "Ada-Europe Guidelines for the Portabiit
of Ada Programs", Ada Letters,ACM SIGAda, Volume 1, Number 3, March, April 102.

[3] F. Pappas, Ada Portability Guidelines, Soffech Inc., Waltham, MA, March 1985,
DTIC/NTIS #AD-A 160 390.

[4] J. Goodenough, and others, Ada RetUsability (;uideliuc's, SOl'CCh Inc., Waltham, MA,
April 1985. DTIC/NTIS #AD-A 161 456.

151 E. R. Matthews. "Observations on the Portability of Ada I/O". ACM Ada Letters VII(5),

pp. 100-103 (September, October 1987).

[6] Peter Freeman, Tutorial: Software Reusabilitv, Compter Society Press, 1987.

[7] "Ada Compiler Validation Procedures and Guidelines", Ada Joint Program Office,
Ada Letters, ACM SIGAda, Volume Vi1, Number 2, March, April 1987.

[8] "A Framework for Describing Ada Runtime I nvironments", Ada Runtime Environment
Working Group of SIGAda, October 15, 1987.

[9] "Catalogue of Ada Runtime Implementation .)epcndencies", CECOM, Center for Software
Engineering, CIN: C02092JB0001. 15 February 1089, and ACM SIGAda Ada Runtime Environment
Working Group. December 1. 1987. version 2.0.

[10] J. lchbiah, et al, Rationale for the Design ofi the Ada Programming Language,
ACM SIGPLAN Notice,. 14(6), Part B (June IT-)).

[11] "Ada Style Guide", Software Productivity C(isortium. Reston, VA, SPC-TR-88-003,
Version i.0, February 1988.

-30-

Transportability Guidelines for Ada Real-Time Software

8. Glossary

ARTEWG: The Ada RunTime Environment Working Group, is a group sponsored by the
Association for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda),
whose purpose is to address the problems encountered in runtime environments.

PIWG: The Performance Issues Working Group, is a group sponsored by the Association
for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda), whose
purpose is to write benchmark programs which can be executed on different AdF
compilation systems and provide performance information.

Target Architecture: The computer architecture used for execution of object code generated
by an Ada compiler. [7]

-31-

Tra nportability Guidelines for Ada Real-Time Software

9. Appendix A - Implementation Tests

The tests in this appendix will need to be customized to compile on each prospective target.
This is because they are constructed almost entirely of implementation dependencies for the
purposes of determining which ones are supported by an implementation. In many cases,
the only output from a test will be compiler diagnostics indicating that a feature is not
supported. In these cases, the user can usually comment the offending statement, or make
small modifications to allow the program to compile.

These tests may be used to help determine the implementation approach used by both the
initial target and the new retargeted environment. This information is useful to isolate
problems that are not otherwise obvious. The results of the tests should be documented in
the Transporting Manual. If problems occur during the transporting effort, the differences
in imiplementation approaches identified by the tests can provide a good starting point for
determining the cause of the problem.

........ ++, +

- TST LEN PACK - This procedure tests the implementation of
- the SIZE representation clause and the pragma PACK for simple

-- types and arrays.

-- The tests use the following simple types:

-- A BOOLEAN sot to 8 bits, a BOOLEAN set to 1 bit, an unsized

-- 4-bit INTEGER, a 4-bit INTEGER set to 4 bits, an unsized

-- 3-bit INTEGER, and a 3-bit INTEGER set to 3 bits.

-- Thrce array, are decla.cd for each simple type, one that is

-- is not pncked, cnn that is packed, and one that is unpacked

-- but sized to the minirrat possible size.

-- The size (from the SIZE attribute) is printed for all 24 array

"- typec.

-- Two questions concerning fixed point types are also niven as

-- declarations. Can the size of a fixed point type be set to

-- half the size of the size of the implementation's INTEGER type'

-- Can 'SMALL for a fixed point type be set to a non-power of twc'

-- Author: R.W. Sebesta

Date: August, 1988

with TEXT 10;

use TEXT_10;

procedure TST LEN PACK is

package INT_10 is new INTEGER IO(INTEGER);

use INT10;

type SMALLBOOLTYPE is new BOOLEAN;

for SMALLOOLTYPE'SIZE use 8;

type TINY BOOLTYPE is new BOOLEAN;

for TINY_BOOLTYPE'SIZE use 1;

type SMALL INT1 TYPE is range 0..15;

for SMALL INT 1_TYPE'SIZE use 4;

type SMALL INT2 TYPE is range 0..15;

type TINYINTITYPE is range 0..7;

-32-

Transportability Guidelines for Ada Real-Time Software

for TINYINT_1TYPE'SIZE use 3;
type TINYINT_2TYPE is range 0. .7;-

type ARRAYB9001_TYPE is array (l..100) of SMALL_5001 TYPE;

type ARRAY_9001._2 TYPE is array (0..100) of TINY_900L rYPE-

type ARRAYSMALLINT_1TYPE is array (l..100) of SM4ALLINTITYPE;

type ARRAYSMALLINT_2TYPE is array (I..100) of SMALLINT_2TYPE;

type ARRAYTINYINTITYPE is array (l..100) of TINY_14T 1 TYPE;

type ARRAYTINYINT_2TYPE is array (l..100) of TINY_ IqT_2_TYPE;

type ARRAYS8001 1_TYPE_P is array (l..100) of SMALLBC). TYPE;

type ARRAYB00L_2TYPEP is array (l..100) of TINYB00._TYPE;

type ARRAYSMALLINT1TYPEP is array (1. .100) of SMA LINT_1TYPE;
type ARRAYSMALLINT2TYPEP is array 01..100) of SMALLINT_2TYPE;

type ARRAYTINYINT_1TYPEP is array (0..100) of TINY _INT _1 _TYPE;

type ARRAYTINYINT_2_TYPE_P is array (1..1700) of TINY INT_2_TYPE;

pragma PACK (ARRAYB9001_TYPEP);

pragma PACK (ARRAYBOOL_2TYPEP);

pragma PACK (ARRAYSMALLINT_1TYPEP);

pragma PACK (ARRAYSMALLINT_2_TYPE_P);

pragma PACK (ARRAYTINYINT_1TYPEP);

pragma PACK (ARRAYTZNYINT_2_TYPEP);

type ARRAY_800L1 1_TYPE_S is array 01..100) of SMALL_ h)1 TYPE;

type ARRAYB0OL_2TYPES is array (I..100) of TINY_BOUL _TYPE;

type ARRAYSMALLINT_1 _TYPE _S is array (l. .100) of SMA'L INT _ TYPE;

type ARRAYSMALLINT_2_TYPE _S is array (1. .100) of SMALLINT_2TYPE;

type ARRAYTINYINT_1TYPES is array (1. .100) of TINIINT_1TYPE;

type ARRAYTINYI NT_2TYPES is array (1. .100) of TINY _INT_2_TYPE;

for ARRAY_8001_1 _TYPES'SIZE use 100;

for ARRAY_B001 2_TYPES'SIZE use 100;

for ARRAYSMALLINT_1TYPES'S:ZE use 400;

for ARRAYSMALLINT_2TYPESSIZE use 400;

-- for ARRAY-TINYINTITYPES'SIZE use 300;

for ARAIYIT__YESSZ use 300;

type FIXEDTYPE is detta 0.125 range -5.0. .5.0;

for FIXEDTYPE'SIZE use INTEGER'SIZE / 2;

for FIXED-TYPE'SMALL use 0.01;

begin

PUT (''Size of an unpacked array of 100 8-bit BOOLEAN c~oflEnts is:");

PUT (ARRAY_8001 1TYPE'SIZE); NEWLINE;

PUT (''Size of an unpacked array of 100 singte-bit BOOLLAN e~cmwnts is:'');

PUT (ARRAY_8001 2_TYPE'SIZE); NEWLINE;

PUT (''Size of an unpacked array of 100 4-bl sized IN1f.LR etemionts is:");

PUT (ARRAYSMALLINT_1TYPESIZE); NLWLINF;

PUT ('Size of an unpacked array of 100 4-bit unii~zcd INTEGER ctements is:",);

PUT (ARRAYSMAILLINT_2TYPESIZL); NLWLIE;

PUT ("'Size of an unpacked array of IOU 3 bit bsi2Ld INIrCER elemcnits is:");

.31-

Transportability Guidelines for Ada Re~iI-Timne Software

PUT (ARRAY TINY INT 1 TYPE'SIZE); NEWLINE;

PUT ("SiZe of art unlacked array of 100 3-bit unsied INTEGER etempnts is:");

PUT (ARRAY TINY INT 2 TYPE'SIZE); NEWLINE;

NEW_LINE;

PUT ("Size of a packed array of 100 8-bit BOOLEAN elements is:");

PUT (ARRAYBOOL_1_TYPEP'SIZE); NEW-LINE;

PUT ('Size of a packed array of 100 single-bit BOOLEAN elements iq:");

PUT (ARRAYBOOL_2_TYPEP'SIZE); NEW LINE;

PUT ("Size of a packed array of 100 4-bit sized INTEGER elements is:");

PUT (ARRAY SMALL INT ITYPEP'SIZE); NEW LINE;

PUT ("Size of a packed array of 100 4-bit unsized INTEGER element, is:");

PUT (APRAY SMALL _ INT_2_TYPEP'SIZE); NEWLINE;

PUT ("Size of a packed array of 100 3-bit sized INTEGER elements iq:");

PUT (ARRAYTINYINTlIYPEP'SIZE); NEW LINE;

PUT ("Size of a packed array of 100 3-bit unsized INTEGER elements is:");

PUT (ARRAYTINYINT_2_TYPE_P'SIZE); NEWLINE;

NEWLINE;

PUT ("Size of a %i7d unnraked array of 100 8-bit BOOLEAN elements is:");

PUT (ARRAY'BOOL1 TYPES'SIZE); NEW LINE;

PUT ("Size of a sized unoinckcd array of 100 single-bit BOOLEAJ elements is:");

PUT (AQRAY_R 0L? TYPE S'SZE); NEW LINE;

-- PUT ("Size of a sized unparked array of 100 4-bit sized INTEGER elements is:");

PUT (ARRAY SMALL INT 1TYPES'SIZE); NEWLINE;

-- PUT ("Size of a sized tinpacked array of 100 4-bit unsized INTEGER elements is:");

PUT (ARRAY SMALL INT 2 TPES'SIZE); NEW LINE;

PUT ("Size of a sized unpacked array of 100 3-bit sized INTEGER elements is:");

-- PUT (ARRAY TINY INJ 1_TYPE_S'SIZE); NEW_LINE;

PUT ("Size of a sized unnacked array of 100 3-bit unsized INTEGER elements is:");

PUT (ARRAY TINY INT 2 TY'E S'SIZE); NEWLINE;

end TST LEN eACK;

-34-

Transportability Guidelines for Ada Real-Time Software

TSTCOLL - This procedure tests the STORAGE SIZE-

representation clause for collections for access typ-s.

Three access types are defined,)ne with a STORAGE-SIZE

specified. The type that is tested last is to used to

determine whether there is any interference among collections.

Author: R.W. Sebesta

- Date: July, 1988

with TEXT 10;

use TEXT_10;

procedure TST COLL is

type BIG INT is range 0..1000000;

package BIG INT 10 is new INTEGERIO(BIGINT);

use BIG INT 10;

type INT_16 is range -32768..32767;

for INT 16'SiZE use 16;

type INT_ 1_PTR TYPE is access INT_16;

type INT_2_PTR TYPE is access INT_16;

for INT 2_PTR TYPEISTORAGE SIZE use 10000;

type INT_3_PTR TYPE is access INT_16;

PTR_1 :INT1 PTR TYPE;

PTR_2 - INT 2PTR TYPE;

PTR 3 INT 3 PTR TYPE;

NUM CBJECTS : BIGINT;

begin

DEFSIZE_':

begin

PUT ("The default size for an INT_16 collection is:");

PUT (INT 1PTR TYPESTORAGE SIZE); NEWLINE;

NUMOBJECTS := 0;

for COUNT in 1..1000000 loop
PTR_1 := new INT_16;

NUN-OBJECTS := NUNOBJECTS + 1;

end loop;

exception

when STORAGE ERROR >

PUT (-Maximum num/ber of INT_16 objects with default STORAGE-SIZE is:");

PUT (NUM_OBJECTS); NEW-LINE;

end OEF SIZE_1;

SET-SIZE:

begin

PUT ("Size of a collection for INT _lb objects that is sut to 10000 ib:");

PUT (!NT P1R TYPE'STORAGESIZE); NEW LINE;

NUNOBJECTS :z 0;

for COUNT in 1..1000000 loop

Transportability G(iLidelines for Ada Real-Time Software

PTR 2 :r new INT_16;

NI'4 nBJECTS :- NUN OBJCTS " 1:

end Loop;

except ion

when STORAGE ERROR '

PUT ("Maximum number of INT_16 objects with STORAGI SIZE = 10000 is:");

PUT (NUM OBJECTS); NEW LINE;

end SET_SIZE;

DEF SIZE_2:

begin

PUT ("Default size of a collection for INT_16 after al storage is used is:");

PUT (INT 3 PTR TYPE'STORAGE_SIZE); NEWLINE;

NUNOBJECTS := 0;

fnr COUNT in 1..10f00000 Loop

PTRI := new INT_ 16

N1,m OBJFCTS := NUM OBJECTS + 1;

efl loop;

nwrept ion

when STWORAGF FPRTR =>

PUT ("Onxinmjm number of INT 16 objects with default STORAGESIZE is:");

PUT (NUM OBJECTS); NEW_LINE;

end DEF_SIZE_2;

end TST r"OLL;

-36-

Transportability Guidelines for Ada Real-Time Software

NUM-INTS: I~tEGR :=0;

"Y'in

arcrpt TSTN[AP FNT do

for COJNT in 1-1000000 |-op

INTPTR :: new INT_16;

NUMINTS := NUMINTS + 1;

end Ioop;

end TSTHFAO.FNT;

exception

when STORAGE ERROR =>

PUT ("Number of INT_16 objects allocated before STORAGEERROR:");

PUT (NUM_INTS); NEWLINE;

end TSTHEAPTYPE_I;

task body TST STK TYPE I is

NUMPROCS : INTEGER := 0;

procedure TAKE SPACE is

type LIST TYPE is array (1..100) of INT_16;

LIST : LIST TYPE;

begin

NUM PROCS NUN PROCS - 1;

TAKE SPACE;

exreption

when STORAGE ERPOR =>

PUT ("Procccdure TAKE-SPACE ran out of space after");

PUT (NUM_PRCCS); PUT (" calls (100 INT_16s each)"); NEWLINE;

vrd TAKE_ PACE;

begin

accept TST STK _ENT do

TAKE SPACE;

end TST STK ENT;

end TST STK TYPEI;

begin

PUTLINE ("Test run of the TST STK_2 task (STORAGE-SIZE 20000)");

PUT ("Initial task STORAGE SIZE is:");

PUT (TSTSTK_2'STORAGESIZE); NEW LINE;

TSTSTK_2.TSTSTKENT;

PUT-LINE ("Test run of the TSTSTK_1 task (without rep clause)");

PUT ("Initial task STORAGE SIZE is:"1);

PUT (TSTSTKI'STORAGESIZE); NEWLINE;

TST STK_1.TSTSTKENT;

PUT-LINE ("Test run of ,he TSTHEAP_2 task (STORAGESIZE 20000)");

PUT ("Initial task STORAGESIZE is:");

PUT (TSTHEAP 2'STORAGESIZE); NEWLINE;

TSTHEAP_2.TST_HEAPENT;

-38-

Transportability Guidelines for Ada Real-Time Software

TSTTSK STOR - This procedure tests the use of the STORAGESIZE

-- representation clause and the STORAGE-SIZE attribute for tasks.

Four tests are atteffpted. If any of them uses alt available

-- storage, the subsequent tests are obviously not made. In these

-- cases, the order of the tests can easily be changed--the four

-- are instigated by code sequences at the end of the procedure

-- TSTTSKSTOR.

-- The four tests are:

-- 1. Set STORAGE-SIZE for a task to 20000 and cause it to allocate

stack space until the STORAGE-ERROR is raised.

-- 2. Same as 1, except without STORAGE-SIZE set.

-- 3. Set STORAGE SIZE for a task to 20000 and cause it to allocate

-- heap space until the STORAGE ERROR is raised.

4. Same as 3, except without STORAGE-SIZE set.

Author: R.W. Sebesta

Date: August, 1988

with TEXT_10;

use TEXT 10;

procedure TSTTSKSTOR is

package INT10 is new INTEGERIO(INTEGER);

use INT_10;

task type TST HEAPTYPEI is

entry TST_ EAP ENT;

end TSTHEAPTYPE_1;

task type TST STKTYPE_1 is

entry TST STK ENT;

ena T-SSTKTYPE_I;

type TSTHEAPTYPE_2 is new TSTHEAPTYPEI;

for TSTHEAPTYPE_2'STORAGE SIZE use 20000;

type TSTSTK TYPE_2 is new TSTSTKTYPE_1;

for TSTSTK TYPE 2'STORAGESIZE use 20000;

type INT 16 is range -32768..32767;

for INT_16'SIZE use 16;

TSTOHEAP 1 : 1STHEAP TYPE_1;

TST HEAP 2 : TST HEAP TYPE_2;

TST STK 1 : TST STK TYPE_l;

TST STK_2 : TSTSTK TYPE_2;

tabk b dy T THEAPTYPE 1 is

type INTPTR TYPE is access INT_16;

INTPTR : INPTRTYPE;

-37-

Transportability Guidelines for Ada Real-Time Software

PUT-LINE ("Test run of the TSTHEAP_1 task (without rep cLause)");

PUT ("Initiat task STORAGE-SIZE is:");

PUT (TSTHEAPI 'STORAGE SIZE); NEWLINE;

TST HEAPI.TST HEAP ENT;

end TSTTSKSTOR;

Transportability Guidelines for Ada Real-Time Software

TST FNUMTIME - This procedure determines the relative cost of

-- using representation clauses to force nonconsecutive values to

-- be used for enumeration types. CALENDAR.CLOCK is used to time

-- a loop containing numerous references to arrays using an

-- enumeration types as their index types. Also included in the

loop are uses of the attributes PRED and SUCC. The loop, which

-- has 100000 repetitions, is repeated 10 times and the average

-- time is output. The average of 10 reDetitions is used to

-- avoid some of the inaccuracies of using CLOCK on a variety of

- - systems.

-- Author: R.W. Setesta

-- Date: August, 1988

with CALENDAR;

use CALENDAR;

with TEXT10;

use TEXT 10; -

procedure tst enum time is

package FLT 10 is new FLOAT 10 (FLOAT);

uqe FLT10;

type rNUM TYPE is (SUN, NON, TUE, WED. THU, FRI, SAT);

for ENUMTYPE use (SUN :> -300, MON => -200, TUE => -100,

IJFO 0 O, THU z> 100, FRI => 200, SAT :> 300);

type LIST TYPE is array (ENUM_TYPE) of INTEGER;

LIST_1 : LIST_1YPE;

LIST2 : LIST TYPE;

TIME 1 : TIME;

TIME2 : TIME;

TIME USED : DURATION;

TOTAL TIME : FLOAT;

TIME USEDFLT : FLOAT;

AVG-TIME FLOAT;

begin

TIME_1 := CLOCK;

LISTI(SUN) := 2;

for INDEX in MON..SAT loop

LIST_1(INDEX) := LIST_1(ENUMTYPE'PRED(INDEX)) + 1;

end loop;

TOTAL-TIME := 0.0;

for BIG COUNT in 1..10 Loop

TIME 1 := CLOCK;

for COUNT in 1..100000 loop

for INDEX in SUN..SAT loop

LIST 2(INDEX) := LIST I(INDEX);

end loop;

for INDEX in SUN..SAT loop

-40-

Transportability Guidelines for Ada Real-Time Software

LISTI(INDEX) := LIST_2(INDEX);

end loop;

for INDEX in MON..FRI loop

LIST_1(ENUMTYPE'SUCC(INDEX)) := LIST 2(ENUMTYPE'PRED(INDEX)) " 1;

LIST 1(ENUMTYPEUPRED(INDEX)) :z LIST 2(ENUNTYPE'SUCC(INDEX)) * 1;

end loop;

end loop;

TIME_2 :- CLOCK;

TIME-USED := TIME_2 - TIME_1;

TIME USED FLT := FLOAT(TIMEUSED);

TOTAL-TIME := TIMEUSEDFLT + TOTAL-TIME;

PUT ("Time used is:");

PUT (TIMEUSEDFLT); NEWLINE;

end loop;

PUT ("Total time for 10 iterations:");

PUT (TOTALTIME); NEWLINE;

AVGTIME := TOTAL TIME / 10.0;

PUT ("Average time per iteration:");

PUT (AVGTIME); NEWLINE;

end TSTENUM TIME;

-41-

Transportability Guidelines for Ada Re:l-Time Software

TST STATICREC ALIGN - This procedure tests an Ada implementation's

ability to provide for record alignment for static records. The

static records are defined in the separate package STATIC RECDATA.

The four importcd record objects, REC_lo REC_2, REC_3, and REC_4

are specified to have alignments of 2, 3, 4, and 8,

-- Author: R.W. Sebesta

-- Date: JuLy, 1988

with SYSTEM;

with UNCHECKED-CONVERSION;

with TEXT_10;

use TEXT_10;

with STATICREC DATA;

use STATICREC DATA;

procedure TSTSTATICREC_ALIGN is

package INT_10 is new INTEGERIO(INTEGER);

use INT_10;,

function CVTADDRESSTOINTEGER is new UNCHECKED-CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => INTEGER);

begin

-- Test for mnd 2 alignni7nt

if CVT ADDRESSTO INTEGER (RECI'ADDRESS) mod 2 = 0

then PUTLINE ("Mod 2 atignment is OK");

else PUT-LINE ("Mod 2 alignment is incorrect");

end if;

Test for mod 3 alignment

if CVT ADDRESSTOINTEGER (REC 2'ADDRESS) mod 3 = 0

-- then PUT-LINE ("Mod 3 alignment is OK");

-- else PUT LINE ("Mod 3 alignment is incorrect");

end if;

Test for mod 4 alignment

if CVTADDRESSTOINTEGER (REC_3'ADDRESS) mod 4 = 0

then PUT-LINE ("Mod 4 alignment is OK");

else PUT-LINE ("Mod 4 alignment is incorrect");

end if;

-- Test for mod 8 alignment

if CVTADDRESSTO INTEGER (REC_4'ADDRESS) mod 8 = 0

then PUT-LINE ("Mod 8 alignment is OK");

else PUT LINE ("Mod 8 alignment is incorrect");

end if;

-42-

Transportability Guidelines for Ada Real-Time Software

end TST STAT IC REC ALIGN;

Transportability Guidelines for Ada Real-Time Software

TS _RECALIGN - This procedure tests an Ada impLementaticn's abitty

- to piovide for the aw:gnment of stack atlocited and hevp-atloatd

records. The tested a(ignments are 2, 3, 4, and 8. The procedue

checks the alignment of aLL compiled records. Of course, correc'

-- alignment could be accidental.

-- Author: R.W. Sebesta

-- Date: July, 1988

with SYSTEM;

with UNCHECKED-CONVERSION;

with TEXTIO;

use TEXT 10;

procedure TSTRECALIGN is

package INT 10 is new INTEGERIO(INTEGER);

use INT_10;

function CVTADDRESS TOINTEGER is new UNCHECKED-CONVERSION

(SOURCE : SYSTEM.ADDRESS, TARGET = INTEGER);

-- Test for mod 2 alignment

type REC_1_TYPE is

record

B : BOOLEAN;

A INTEGER;

end record;

for REC_1 TYPE use

record at mod 2;

end record;

-- Test for mod 3 alignment

type REC_2_TYPE is

record

A : BOOLEAN;

8 : INTEGER;

end record;

for REC 2 TYPE use

- record at mod 3;

-- end record;

-- Test for mod 4 alignment

type REC_3_TYPE is

record

A : BOOLEAN;

C : INTEGER;

end record;

for REC_3_TYPE use

-44-

Transportability Guidelines for Ada Real-Time Software

record at mod 4;
end record;

Test for mod 8 atigent

type REC_4 TYPE is

record

A : BOOLEAN;

D : INTEGER;

end record;

for REC_4TYPE use

record at mod 8;

end record;

Test for mod 16 alignment

type REC_5_TYPE is

record

A BOOLEAN;

B INTEGER;

end record,

for REC STYPE use

record at mod 16;

end record;

-" 0U 41, DUM_2, and OUM_3 are used to force an odd address

for records that are supposed to be even aligned.

DUM_1 CHARACTER;

RECd1 RECI_TYPE;

REC_2 : REC_2_TYPE;

DUM?2 CHARACTER;

REC_3 REC_3_TYPE;

-- DUM_3 CHARACTER;

REC4 :REC4 _TYPE;

type PTRRECITYPE is access RECITYPE;

type P1RREC_2_TYPE is access REC_2_TYPE;

type PTR REC 3 TYPE is access REC_3_TYPE;

type PTR REC &_TYPE is access REC_4 TYPE;

type PTRREC_5_TYPE is access RECS TYPE;

function CVT PTR REC 1 TYPETOINTEGER is new UNCHECKED-CONVERSION

(SOURCE :" PTR REC1 TYPE, TARGET -' INTEGER);

function CVT PTR REC 2 TYPETOINTEGER is new UNCHECKED-CONVERSION

(SOURCE ry PTRREC_2_TYPE, TARGET -> INTEGER);

function CVT PTRREC_3_TYPETOINTEGER is new UNCHECKED-CONVERSION

(SOURCE z> PTRREC_3_TYPE, TARGET => INTEGER);

function CVT PTR REC 4 TYPETOINTEGER is new UNCHECKEDCONVERSION

(SOURCE => PTRREC_4_TYPE, TARGET :> INTEGER);

function CVT PTR RECSTYPE TOINTEGER is new UNCHECKED-CONVERSION

-45-

Transportability Guidelines for Ada Real-Time Software

(SIUJRCE => PTPREC_5_TYPE, TARGET :> INTEGER);

PIR REC 1 PTRREC_1 _Ty-E;

PTRRFC 2 PTR REC 2 TYPE:

PTR RFC 3 : PTRREC_3-TYPE;

PTR REC 4 : PTR REC 4 TYPE;

PTR REC 5 : PTRREC_5 TYPE;

beqin

if CVT_AODRESSTOINTEGER (RECI'ADDRESS) mod 2 0

then PUT-LINE ("Mod 2 alignment is OK");

else PUT LINE ("Mod 2 alignment is incorrect");

end if;

-- if CVT ADDRESSTO INTEGER (REC_2'ADORESS) mod 3 = 0

then PUT LINE ("Mod 3 alignment is OK");

else PUT-LINE ("Mod 3 alignment is incorrect");

end if;

if CVT_AC PfSS_TO_INTEGER (REC_3'ADDRESS) mod 4 = 0

then PUTLINE ("Mod 4 alignment is OK");

else PUT LINE ("Mod 4 alignment is incorrect");

end if;

if CVTADDRESSTOINTEGER (RECA'ADDRESS) mod 8 = 0

then PUT-LINE ("Mnd 8 alignment is OK');

else PUT-LINE ("Mod 8 alignment is incorrect");

end if;

PTR-PC 1 := new REC 1 TYPE;

if CVT PTR PEC 1 TYPETOINTEGER (PTR REC 1) mod 2 0 0

then PUT-LINE ("Mod 2 atignment of heap objects is OK");

else PUT LINE ("Mod 2 aligrnment of heap objects is inrorrect");

end if;

PTR REC 2 := new REC_2_TYPE;

if CVT PTR REC 2 TYPETOINTEGER (PTR REC 2) mod 3 = 0

then PUT-LINE ("Mod 3 alignment of heap objects is OK");

else PUTLINE ("Mod 3 aligrnent of heap objects is incorrect");

end if;

PTRAREC 3 :x new REC_3_TYPE;

if CVT PTR REC 3 TYPETOINTEGER (PTRREC 3) mod 4 = 0

then PUT LINE ("Mod 4 alignent of heap objects is OK");

else PUT_LINE ("Mod 4 alignment of heap objects is incorrect");

end if;

PTRREC 6 := new REC4TYPE;

if CVT PTR REC 4 TYPETOINTEGER (PTRREC 4) mod 8 = 0

then PUTLINE ("Mod 8 alignment of heap objects is OK");

-46-

Transportability Guidelines for Ada Real-Time Software

else PUT-LINE ("Mod 8 alignment of heap objects is incorrect');

end if;

PTR REC 5 .= new E:_5 TYPe;
if CVT PTR REC5 TYPETO iNTEGER (PTRREC_5) mod 16 = 0

then PUT-LINE ("Mod 16 alignment of heap objects is OK");

else PUT LINE ("Mod 16 atignment of heap objects is incorrect");

end if;

end TSTREC ALIGN;

-47-

Transportability Guidelines for Ada Real-Time Software

STATIC REC DATA - This package provides static record atignment

-- data that is impxorted by the procedure TST STATICRECALIGN.

The record types in this package are atigned on mod 2, 3, 4, arv

-- 8 boundaries.

-- Author: R.W. Sebesta

-- Date: Jury, 1Q88

package STATIC REC DATA is

type REC_1 TYPE is

record

A : INTEGER;

end record;

for REC ITYPE use

record at mod 1;

end record;

-- type REC 2_TYPE is

-- record

- 8 : INTEGER;

-- end record;

-- for REC_2 TYPE use

- - record at mod 3;

end record;

type REC_3_TYPE is

record

C : INTEGER;

end record;

for REC 3_TYPE use

record at mod 4;

end record;

type REC4 TYPE is

record

D : INTEGER;

end record;

for REC_4_TYPE use

record at mod 8;

end record;

DUM1, DUM_2, and DUM_3 are used to force odd addresses for

-- the records whose alignments are supposed to be even.

DUI : CHARACTER;

RECI RECITYPE;

- REC2 : REC_2_TYPE;

DUM 2 : CHARACTER;

-48-

Transportability Guidelines for Ada Real-Time Software

REC_3 REC_3_TYPE;

DUM_3 CHARACTER;

REC_4 REC_4_TYPE;

end STATICREC DATA;

-49-

Transportability Guidelines for Ada Real-Time Software

- TST RIT N4 - This procedure determines the bit numbering

direction of an Ada implementation.

Author: R.W. Sebesta

-- Date: July, 1088

with TEXT_10;

use TEXT_10;

with UNCHECWeDCONVERSION;

procedure ;STBIT NUM is

type TINY-TYPE is range 0. ,;

type SMALL TYPE is range 0 .. (2 " 7) 7;

type BYTE TYPE is range 0 .. (2 * 8) - 1;

type REC_TYPE is

record

TSTBIT : TINY TYPE;

OUMi : SMALL-TYPE;

end record;

for REC TYPE ure

record

1ST BIT nt 0 range 0..0;

DUM 1 at 0 range 1..7;

end record;

package BYTE_10 is now INTEGERIO(BYTE_TYPE);

use BYTEiO;

function CVT RECTYPE TOBYTE TYPE is new UNCHECKED-CONVERSION

(SOURCE => RECTYPE, TARGET => BYTETYPE);

REC : REC_TYPE;

INT8 : BYTETYPE;

begin

REC.TST BIT := 1;

REC.DUM_1 :z 0;

INT8 := CVTRECTYPE_TOBYTETYPE (REC);

if INT8 a 1

then PUT ("This implementation numbers bits right to left");

else if INT8 = 255

then PUT ("This implementation numbers bits left to right');

else

PUT ("The test failed; the value of INT8 is:");

PUT (INT); NEWLINE;

end if;

end if;

end TSTBITNUM;

-50-

Transportability Guidelines for Ada Real-Time Software

-- TST ADDR - This procedure is designed to test an-Ada

-- implementation's capabilities for ADDRESS clauses anJ

-- the ADDRESS attribute.

-- Six separate cases are tested:

-- 1. An integer in a package (PKGSPOT) (static)

2. An integer in a procedure (PROCSPOT) (stack allocated)

3. An unconstrained array of integers in a procedure (LIST)

-- 4. An integer in a task (TSK SPOT)

5. The value of a pointer, PTR 1, is compared with

-- PTR_1.atL'ADDRESS for equality.

-- 6. The implementation is tested to determine whether

multidimensional arrays are stored in row-major or

column-major order, using the ADDRESS attribute.

(Addresses of array elements could be wrong if the

incorrect assumption is made about the order of storage

of multidimensional array elements.)

-- The four variables, PGKSPOT, PROCSPOT, LIST, and TSKDPOT,

are placed at a specific addresses and then the ADCRESS

attribute is used to determine their addresses, which are then printed.

Author: R.W. Sebesta

-- Date: JuLy, 1988

-- The VAX Ada function TO-ADDRESS is used in this procedure to

-- convert constants to ADDRESS type for use in address representation

-- clauses. The VAX documentation states that universal constants

-- wilt serve as ADDRESS values, but the compiler rejects them.

-- Maybe my documentation is ahead of my compiler version.

with UNCHECKED CONVERSION;

with TEXT_10;

use TEXT_10;

with SYSTEM;

procedure TST ADDR is

function CVT ADDRESSTO INTEGER is new UNCHECKED-CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => INTEGER);

package TSTPKG is

procedure PROC (LENGTH : in INTEGER);

task TSK;

end TSTPKG;

package body TST PKG is

ADDR : INTEGER;

PKGSPOT : INTEGER;

for PKGSPOT use at SYSTEM.TO_ADDRk5S(60);

type UNCONSTLIST is array (INTEGER range ') of INIEGER;

package INT10 is new INTEGER IO(INIEGER);

-51-

Transportability Guidelines for Ada Real-Time Software

use INT_10;

procedure PROC (LENGTH: in INTEGER) is

PROC SPOT : INTEGER;

for PROC SPOT use at SYSTEM.TOA)DRESS(72);

LIST : UNCONST LIST (1 .. LENGTH);

for LIST use at SYSTEM.TOADDRESS(84);

type INT PTR TYPE is access INTEGER;

function CVT INT PTR TYPE TOINTEGER is new UNCHECKED-CONVERSION

(SOURCE => INTPTRTYPE, TARGET %3 INTEGER);

PTR_1 : INT PTR TYPE;

INT ADDRI: INTEGER;

INTADDR_2: INTEGER;

type MAT-TYPE is array (1..2, 1..2) of INTEGER;

MAT : MAT-TYPE;

begin

PUT ("MEMORYSIZE is:");

PUT (SYSTEM.MEMORYSIZE); NEWLINE;

PUT ("Address of PKGSPOT is (Should be 60):");

PUT (CVT ADDRESSTOINTEGER (PKG SPOT'ADDRESS)); NEWLINE;

PUT ("Address of PROCSPOT is (Should be 72):");

PUT (CVTADDRESSTO_INTEGER (PROC SPOT'ADDRESS)); NEW-LINE;

PUT ("Address of LIST is (Should be 84):");

PUT (CVTADDRESSTOINTEGER (LIST'ADDRESS)); NEW-LINE;

PTR 1 := new INTEGER;

PTR_1.aL: 42;

INTADDR 1 CVT INT PTRTYPETO INTEGER (PTRI);

INT ADDR_2 := CVTADDRESS TOINTEGER (PTRI.alt'ADDRESS);

if INTADDR_I = INTADDR_2

then PUT ("The values of PTR 1 and PTR 1.all'ADDRESS are equal");

else PUT ("The values of PTR1 and PTRI.aII'ADDRESS are unequal");

end if;

NEW-LINE;

if CVTADDRESSTOINTEGER (MAT(l, 2)'ADDRESS) <

CVTADDRESSTO INTEGER (MAT(2, 1)'ADDRESS)

then

PUT ("This implementation stores multidimensional arrays");

PUT (" in row-major order");

else

PUT ("This implementation stores multidimensional arrays");

PUT (" in column-major order");

end if;

NEW-LINE;

end PROC;

task body TSK is

TSKSPOT : INTEGER;

for TSKSPOT use at SYSTEM.TOADDRESS(96);

-52-

Transportability Guidelines for Ada Real-Time Software

begin
PUT ("Address of TSK SPOT is (Should be 96):1);

PUT (CVT ADDRESS TO INTEGER (TSKSPOT'ADDRESS)); NEW-LINE;

end TSK;

end TST PKG;

begin

TST PKG.PROC (10);

end TST ADDR;

-53-

Transportability Guidelines for Ada Real-Time Software

TST REC COMP - a procedure to test the capabilities of an

-- Ada system to accept and correctly follow several different

specifications of representation clauses for record components.

-- The tested features are:

-- 1. Record components that cross storage unit boundaries.

-- 2. Placing a default size element on a non-boundary.

3. Placing an odd-sized record as a component at a

- - non-boundary in a record.

-- 4. Are single-bit components allowed?

-- 5. Can a 32-bit integer be placed at a non-byte boundary?

-- 6. Can a 32-bit integer be placed at a byte boundary?

7. Can a FLOAT (assumed to be 32 bits) be placed at a non-byte

-- boundary?

-- 8. Can a FLOAT (assumerd to be 32 bits) be placed at a byte

- - boundary?

9. Can POSITION be used to compute the bit offset from the

- - beginping of a record to the first bit of a component'

-- Author: R.W. Sebesta

-- Date: July, 1988

with TEXT 10;

use TEXT_10;

with SYSTEM;

procedure TSTREC COMP is

package INT1 is new INTEGERIC(INTEGER);

use INT10;

type TINYTYPE is range 0 .. 1;
type SMALLTYPE is range 0 . (2 , 5) - 1;

type BYTETYPE is range 0 . (2 o* 8) - 1;

type MEDIUM TYPE is range 0 .. (2 ** 9) - 1;

type BIGTYPE is range 0 .. (2 ** 18) - 1;

type HUGETYPE is range -(2 ** 31) ,. (2 ** 31) - 1;

-- Components crossing storage unit boundaries

type REC_I TYPE is

record

A SMALL TYPE;

B : MEDIUMTYPE;

C BIGOTYPE;

end record;

for RECiTYPE use

record

A at 0 range 0 4;

I at 0 range 5 .. 13; -- Crosses byte boundary

C at 0 range 14 . 31; -- Crosses word boundary

end record;

-54-

Transportability Guidelines for Ada Real-Time Software

-- Placing a default size element on a non-boundary

type REC_2_TYPE is

record

A : SMALLTYPE;

B : BOOLEAN;

C : BIG-TYPE;

end record;

for REC_2_TYPE use

record

A at 0 range 0 4;

B at 0 range 5 13;

C at 0 range 14 31;

end record;

REC_3 TYPE is a record type for the following test

type REC_3 TYPE is

record

A SMALLTYPE; 5 bits

B MEDIUMTYPE; -- 9 bits

end record;

for REC_3_TYPE use

record

A at 0 range 0.. 4;

B at 0 range 5. 13;

end record;

for REC_3_TYPE'SIZE use 14;

Test for placing a record of odd size at an odd spot

type REC_4 TYPE is

record

A SMALL_TYPE;

X REC_3_TYPE;

end record;

for REC_4_TYPE use

record

A at 0 range 0 .. 4;

X at 0 range 5 .. 19;

end record;

Test for use of a single-bit component

type REC_5 TYPE is

record

A : SMALLTYPE;

8 : SMALLTYPE;

C : SMALLTYPE;

D : TINYTYPE;

-55-

Transportability GClidelines for Ada Real-Time Software

end record;

for REC_5_TYPE use

record

A at 0 range 0..4;

B at 0 range 5..9;

C at 0 range 10..14;

D at 0 range 15..15;

end record;

Test for placing a 32-bit integer on an odd boundary

type REC 6 TYPE is

record

A SMALL TYPE;

B HUGE TYPE;

end record;

for REC_6_TYPE use

record
A at 0 range 0..4;

B at 0 range 5..36;

end reco(d;

-- Test for placing a 32-bit integer on a byte boundary

type REC_7 TYPE is

record

A BYTETYPE;

9 HUGETYPE;

end record;

for REC 7_TYPE use

record

A at 0 range 0..7;

B at 1 range 0..31;

end record;

-- Test for placing a FLOAT type at an odd boundary

type REC_8_TYPE is

record

A SMALLTYPE;

B FLOAT;

end record;

for REC_8_TYPE use

- - record

A at 0 range 0..4;

- at 0 range 5..36;

- - end record;

Test for placing a FLOAT type at a byte boundary

type REC 9 TYPE is

-56-

Transportability Guidelines for Ada Real-Time Software

record

A :BYTETYPE;

B : FLOAT;

end record;

for REC-9 TYPE use

record

A at 0 range 0..7;
B at 1 range 0..31;

end record;

Test of the POSITION attribute

type REC_10 TYPE is

record

A :SMALL TYPE;

B : EDIUM -TYPE;

C :MEDIUMTYPE;

D :SMALLTYPE;

end record;

for REC-10-TVPE use

record

A at 0 range 0. .4;

B at 0 range 5..13;

C at 0 range 14. .22;

D at 0 range 23. .27;
end record;

RECd : REC_1TYPE;

REC-2 :REC_2TYPE;

REC-3 :REC_3_TYPE;

REC-4 : REC_4_TYPE;

REC-5 :REC_5_TYPE;

REC-6 :REC-6 TYPE;

REC-7 :REC_7_TYPE;

RECB6 : REC_8_TYPE;

REC-9 :REC9_TYPE;

REC-10 : REC-10-TYPE;

BIT POS: INTEGER;

beg in
PUT-LINE ("The followiing output indicates correct resuLts");

PUT-LINE (11 for an implementation that has storage units");

PUT-LINE (ee of 8 bits$$);

NEW-LINE:

PUT ("For REC_, the first bit of B is (Should be 5):11);

PUT (REC-1.B'FIRST-BIT); NEW LINE;

PUT ("For RECM, the first bit of C is (Should be 6):11);

PUT (REC1I.CIFIRSTBIT); NEW-LINE;

PUT ("For REC_2, the first bit of B is (Should be 5):,");

PUT (REC_2.B'FlRSTBIT); NEW-LINE;

Transportability Guidelines for Ada Real-Time Software

PUT ("For REC_2, the first bit of C is (Should be 6):");

PUT (REC 2.CfFIRST BIT); NEWLINE;

PUT ("For REC_3, the first bit of B is (Should be 5):");

PUT (REC_3.B'FIRSTBIT); NEW LINE;

PUT ("For REC_4, the first bit of X is (Should be 5):");

PUT (REC 4.X'FIRSTBIT); NEW-LINE;

PUT ("For REC 4, the last bit of X is (Should be 19):");

PUT (REC_4.X'LAST BIT); NEW-LINE;

PUT ("For REC_5, the first bit of D is (Should be 7):");

PUT (REC 5.D'FIRST BIT); NEW LINE;

PUT ("For REC_5, the Last.bit of D is (Should be 7):");

PUT (REC_5.D'LASTBIT); NEW LINE;

PUT ("For REC_6, the first bit of B is (Should be 5):");

PUT (REC_6.8'FIRST BIT); NEW-LINE;

PUT ("For REC_7, the first bit of B is (Should be 0):"1);

PUT (REC 7.B'FIRSTBIT); NEW-LINE;

PUT ("For REC-8, the first bit of B is (ShouLd be 5):1);

PUT (REC 8.B'FIRST BIT); NEW LINE;

PUT ("For REC 9, the first bit of 8 is (Should be 0):");

PUT (REC 9.B'FIRSTBIT); NEWJLINE;

PUT-LINE ("For REC 10, the bit offset of component D from the ");

PUT ("beginning of the record (via POSITION) is (Should be 23):");

BITPOS := RECIO.D'POSITION * SYSTEM.STORAGEUNIT

+ REC 10.D'FIRST_BIT;

PUT (BIT_POS); NEU LINE;

end TST RECCOMP;

-58-

Transportability Guidelines for Ada Real-Time Software

-- TST UNC_CVS - A procedure to test the capabilities of an

Ada implementation to support unchecked conversions.

Tested features:

1. Convert a Larger integer to a smaLler integer

2. Convert a smaller integer to a Larger integer

3. Convert an integer to an integer of equal size

-- NOTE: This procedure produces no output. ALthough testing

the correctness of the results of the tested conversions,

there is no impiementation-independent way of doing it.

-- Author: R.W. Sebesta

-- Date: JuLy, 1988

with UNCHECKEDCONVERSION;

procedure TSTUNC CVS is

type SHORTINTTYPE is range 0 .. (2 8) - 1;

for SHORT INT TYPE'SIZE use 8;

type LONG IN? 1iTYPE is range 0 .. (2 " 16) - 1;

for LONG INT 1TYPE'SIZE use 16;

type LONG INT2JTYPE is range 0 .. (2 * 16) - 1;

for LONG INTZ2 TYPE'SIZE use 16;

SHORT : SHORT INTTYPE;

LONG_1 : LONGlINTITYPE;

LONG 2 : LONG INT 2_TYPE;

function CVTSHORTINT TYPETO LONG INT1 TYPE is new UNCHECKED CONVERSION

(SOURCE => SHORTINTTYPE, TARGET => LONG INT I TYPE);

function CVT LONG [NT 1 TYPETO SHORTINTTYPE is new UNCHECKED-CONVERSION

(SOURCE :>LONG IWT1 TYPE, TARGET : SHORT INT TYPE);

function CVTLONG [NT 1 TYPETOLONG [NT 2 TYPE is new

UNCHECKED-CONVERSION (SOURCE =3 LONG INT 1 TYPE,

TARGET => LONG INT 2 TYPE);

begin

SHORT :: 27;

LONG 1 :: 300;

LONG_2 :a 300;

LONG 1 :x CVTSHORT_[NT TYPE TOLONG [NT 1 TYPE (SHORT);

SHORT :a CVTLONG INT 1 TYPETOSHORT INT TYPE (LONG 1);

LONG 2 :2 CVTLONG INT_1TYPETO LONG INT?2 TYPE (LONG_1);

end TSTUNCCVS;

-59-

Transportability Guidelines for Ada Real-Time Software

10. Appendix B - Transportability Requirements Report

Performance Dependencies: Check if YES

Direct Execution of Interrupt Entries:

Rendezvous without context switch optimization: (

Other Tasking optimization (explain below):

Fast propagation of Exceptions to handler:

Use of Package MACHINE-CODE (LOC:):

High Resolution of type DURATION: (_)

High Resolution of type TIME: (_)

Numeric Dependencies:

Specific Rounding Algorithm Required:

Fixed Point Type with 'Small other than a power of two:

Input/Output Dependencies:

Temporary Files: (

Shared Files:

FORM Afgument String is used:

Rufferirg 14e:hanism is Critical:

Length of File Names Required: (_)

Program Initiation

What requirements are placed on the environment task

prior to program initiation? For examole:

How are parameters for the main subprogram made available?

Are interrupts disabled?

Memory parity has been correctly set'

Other:

BIT ORDERING for Representation Clauses:

BIT numbers are equal to respective power of two:

BIT numbers are non-standard (as follows):

Address Clause Representation:.

Non-Ada Code (HOL) is Used (LOC:):_(_)

Implementation Defined Attributes used:

-60-

